
3.5 Lecture 15: Fourier series and transforms

Fourier transforms are useful for signal analysis, and are also an important
tool for solving differential equations. First let’s recall what Fourier series
can do: any periodic function f(x) defined on a finite interval 0 ≤ x ≤ L
can be written as a Fourier series.

If f(x) is symmetric about the midpoint at L/2, then we can write

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)
,

where {αk} is the set of coefficients. If f(x) is antisymmetric about the
midpoint, then we have

f(x) =
∞∑

k=1

βk sin
(

2πkx

L

)

So we can write a function with no symmetry as

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)
+

∞∑

k=1

βk sin
(

2πkx

L

)

and then making using of cos θ = (eiθ + e−iθ)/2 and sin θ = (eiθ − eiθ)/2i to
write

f(x) =
∞∑

k=0

αk

[
exp

(
i
2πkx

L

)
+ exp

(
−i

2πkx

L

)]

+
i

2

∞∑

k=1

βk

[
exp

(
−i

2πkx

L

)
− exp

(
i
2πkx

L

)]

From which point we can collect terms and write it as

f(x) =
∞∑

k=−∞
γk exp

(
i
2πkx

L

)

where

γk =

⎧
⎪⎨

⎪⎩

1
2(α−k + iβ−k), k < 0
α0, k = 0
1
2(α−k − iβ−k), k > 0.

76

leasantos

SEE
https://en.wikipedia.org/wiki/Fourier_series

Fourier series can only be used for periodic functions! To extend to non-
periodic ones, just pick out an interval of a function and repeat it infinitely
so that it becomes periodic.

How do we calculate the coefficients, γk? Just use the fact that {e−i 2πkx
L }k

constitutes an orthonormal basis for the space [0, L]. That is, consider that
∫ L

0
f(x) exp

(
−i

2πkx

L

)
=

∞∑

k′=−∞
γk′

∫ L

0
exp

(
i
2π(k′ − k)x

L

)
dx.

If k′ ̸= k, then
∫ L

0
exp

(
i
2π(k′ − k)x

L

)
dx =

L

i2π(k′ − k)

[
exp

(
i
2π(k′ − k)x

L

)]L

0

=
L

i2π(k′ − k)
[
exp(i2π(k′ − k)) − 1

]

= 0 since e2πin = 1 ∀n ∈ Z

However, if k′ = k, then the integral is equal to L. In this case,
∫ L

0
f(x) exp

(
−i

2πkx

L

)
dx = Lγk

or

γk =
1
L

∫ L

0
f(x) exp

(
−i

2πkx

L

)
dx.

3.5.1 Discrete Fourier transforms

There are many cases in which it isn’t possible to calculate the coefficients
γk analytically. So we can use numerical methods. It turns out that ap-
proximations with the trapezoidal rule is equivalent to the discrete Fourier
transform.

Consider N slices of width h = L/N. Applying the trapezoidal rule gives

γk =
1
L

(
L

N

) [
1
2
f(0) +

1
2
f(L) +

N−1∑

n=1

f(xn) exp
(
−i

2πkxn

L

)]

when the sample point positions are xn = nL/N. Since f(x) is periodic, we
have f(0) = f(L), so then above simplifies to

γk =
1
N

N−1∑

n=0

f(xn) exp
(
−i

2πkxn

L

)

77

leasantos

see
Fig.7.1
from
book

dx

Trapezoidal
Eq.(5.3) from
book

c_k = sum_{n=0}^{N-1} y_n exp(-i 2pi k n/N)

Note that 1/N was removed, this is the convention

This is the
discrete Fourier transform
(DFT)

We can use this to evaluate coefficients, at least in cases with evenly sampled
data (pretty frequent). It’s also worth noting that while these results were
derived using the trapezoidal rule, there is a sense in which that are exact.
Recall that

N−1∑

k=0

ak =
1 − aN

1 − a
, a ̸= 1,

then
N−1∑

k=0

(
ei 2πm

N

)k
=

1 − ei2πm

1 − ei2πm/N
= 0,

since m is an integer, making the numerator zero. In the case that m = 0,
or is a multiple of N , then the sum is N. So

N−1∑

k=0

exp
(

i
2πkm

N

)
=

{
N if m = 0, N, 2N, ...

0 else

Then consider the sum

N−1∑

k=0

ck exp
(

i
2πkn

N

)
=

N−1∑

k=0

[
N−1∑

n′=0

γn′ exp
(
−i

2πkxn′

L

)]
exp

(
i
2πkn

N

)

=
N−1∑

n′=0

γn′

N−1∑

k=0

exp
(

i2πk(
n − n′

N
)

)

=
N−1∑

n′=0

yn′δn,n′N

= Nyn

=⇒ yn =
1
N

N−1∑

k=0

ck exp
(

i
2πkn

N

)
.

This is the inverse discrete Fourier transform (inv. DFT).
This proves that the matrix with entries

Ukn =
1√
N

exp
(
−i

2πkn

N

)

is a unitary matrix. So we can recover the original values exactly by per-
forming the inverse DFT. So you can move freely back and force between
the original values and the Fourier coefficients.

78

y

y

This is the
INVERSE
discrete Fourier transform
(inverse DFT)

• We can compute this on a computer because the sum is finite

• This discrete formula only gives sample values yn = f(xn). So if the
function is oscillating rapidly between samples, the DFT won’t capture
this, so DFT just gives some idea of the function.

If the function is real, then can use this symmetry to simplify further. Sup-
pose all yn are real and consider ck for N/2 < k ≤ N − 1, so k = N − r for
1 ≤ r < N/2. Then

cN−r =
N−1∑

n=0

yn exp
(
−i

2π(N − r)n
N

)

=
N−1∑

n=0

yn exp (−i2πn) exp
(

i
2πrn

N

)

=
N−1∑

n=0

yn exp
(

i
2πrn

N

)
= c′r

so then cN−1 = c1′ , cN−2 = c′2, etc. So when calculating the DFT of a real
function, we only have to calculate ck for 0 ≤ k < N/2. However, if the yn

are complex, then we need to calculate all N Fourier coefficients.
Bring up dft.py. This program uses exp from the cmath package, which

isn’t the quickest way to calculate the DFT. We can instead do FFT. If we
shift the positions of the sample points. then not much changes. Suppose
that instead of taking samples at xn = nL/N, we take them at x′

n = xn +∆.
Then

ck =
N−1∑

n=0

f(xn + ∆) exp
(
−i

2πk(xn + ∆)
L

)

= exp
(
−i

2πk∆
L

) N−1∑

n=0

f(x′
n) exp

(
−i

2πkxn

L

)

= exp
(
−i

2πk∆
L

) N−1∑

n=0

y′n exp
(
−i

2πkxn

L

)
,

where y′n = f(x′
n) are the new samples. We can absorb the phase factors into

the coefficients as c′k = exp
(
i2πk∆

L

)
ck so that c′k =

∑N−1
n=0 y′n exp

(
−i2πkn

L

)

so that DFT is independent of where the samples are taken.
We can distinguish between Type-I DFT where we divide interval [0, L]

into N slices and take samples at endpoints, and a Type-II where we take
samples at the midpoints of slices.

79

*

*

NOTE:
from
numpy.fft,
rfft
computes only
N/2+1 c_k’s.

There is also
the invere
irfft

*

See
Python
lecture 14

Solve an
example
in class.

We plot
ABS[c]!!!

Discuss
units.

MAIN frequency
+
harmonics

SIGNAL ANALYZERS

<=

3.5.2 2D Fourier transform

It’s useful for image processing, for instance in astronomy (classic case: Hub-
ble image correction). Suppose we have M × N grid of samples ymn. First
do a FT on the rows:

c′ml =
N−1∑

n=0

ymn exp
(
−i

2πln

N

)
,

and then FT the m variable:

ckl =
N−1∑

n=0

c′ml exp
(
−i

2πkm

M

)
.

Combined, these read

ckl =
N−1∑

m=0

N−1∑

n=0

ymn exp
(
−i2π

(
km

M
+

ln

N

))
.

What is the FT doing? Breaking down a signal into its frequency com-
ponents, like a signal analyzer. Bring up dft.py. The first spike is the
frequency of the main wave, and the others are harmonics.

Discrete cosine transform

Recall that if a function is symmetric about x = L/2 (the midpoint) then
we can write

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)

We cannot do this for all functions. However, if we’d like to do so, we can
by just sample a function over an interval, and then adding it to its mirror
image, i.e.,

80

From numpy.fft,
rfft2
computes
(N/2+1)*N coefficients.

There is also
the inverse irfft2

So we make the function symmetric, and when the samples are, we have
y0 = yN , y1 = yN−1, y2 = yN−2, etc. We then get for the DFT:

ck =
N−1∑

n=0

yn exp
(
−i

2πkn

N

)

=
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N−1∑

n=N/2+1

yn exp
(
−i

2πkn

N

)

=
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N∑

n=N/2+1

yN−n exp
(

i
2πk(N − n)

N

)

where in the final line we used exp(i2πk) = 1. Make a change of variables
N − n → n to get

ck =
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N/2−1∑

n=1

yn exp
(

i
2πkn

N

)

= y0 + yN/2 cos
(

2πk(N/2)
N

)
+ 2

N/2−1∑

n=1

yn cos
(

2πkn

N

)
.

Usually though, the discrete cosine transform is applied to real values, which
means that the ck coefficients are real. In this case, we have the cN−r =
c′r = cr, and the inverse transform is

yn =
1
N

N−1∑

k=0

ck exp
(

i
2πkn

N

)

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N−1∑

k=N/2+1

ck exp
(

i
2πkn

N

)⎤

⎦

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N−1∑

k=N/2+1

cN−k exp
(
−i

2π(N − k)n
N

)⎤

⎦

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N/2−1∑

k=1

ck exp
(
−i

2πkn

N

)⎤

⎦

=
1
N

⎡

⎣c0 + cN/2 cos
(

2πn(N/2)
N

)
+ 2

N/2−1∑

k=1

ck cos
(

2πkn

N

)⎤

⎦

81

DCT

inverse DCT

which is the inverse discrete cosine transform. It has so much symmetry that
the DCT is the same as its inverse! If we take the samples at midpoints,
then we can show that the coefficients are

ak = 2
N/2−1∑

n=0

yn cos
(

2πk(n + 1/2)
N

)
,

and the inverse transform is

yn =
1
N

⎡

⎣a0 + 2
N/2−1∑

k=1

ak cos
(

2πk(n + 1/2)
N

) ⎤

⎦ .

A nice feature of the DCT is that it does not assume that the function
is periodic. Neither does the DFT, but it does force the first and last values
to be the same, which can create a large discontinuity. The DCT does not
do this. N.b. we can also calculate the discrete sine transform, but this is
rarely used because it forces the endpoints to zero.

82

DCT have important technological technological uses. They form the mathematical basis for the computer image file called JPEG (Joint Photographic Experts Group), used to store images in the www.

Digital images are represented as regular grids of dots (pixels) of different shade, and the shades are stored on the computer as ordinary numbers.

Because there are too many numbers to store. We can instead store using the DCT.

The JPEG format works by dividing the pixels in an image into blocks and performing DCTs on the blocks, then looking for coefficients a_k that are small and can be discarded.
The remaining coefficients are stored in a file. Since many a_k’s are small, the file is smaller.

 When you view a picture, your computer reconstitutes the picture using the INVERSE transform of a_k’s. The image is not exactly the original, but usually your eyes cannot tell. Sometimes, you can detect small problems in the image, called “compression artifacts”, arising from the missing data.

A variant of the same technique is used to compress moving pictures (films, videos) using MPEG.

A similar scheme is used for music, in the file MP3. In this case, the components that are discarded are chosen not only on the grounds of the smallest values, but also with a knowledge of what humans can hear.

The assignment
does not have a
problem on DCT,
but the book has
Ex.7.6

Chapter 4

Lectures 16-20

We’ve gotten pretty far in the lecture notes (3/4 complete), and a little over
halfway in the homeworks. In all honestly, I’m feeling a bit burned out on
the homeworks; likely because of both having written crap code on the first
half of HW3 without internet access, and jamming through the lectures in
cars and planes without taking time to focus on the content. But this means
a couple things: (1) I’m comfortable enough writing code in Python to do
non-trivial things without constantly checking StackExchange, and (2) I’ve
gotten pretty damn far. We’re going to keep pushing, with more of a concept
focus. I’m still committing to doing the good problems from homeworks 3
and 4, and most of the remaining lectures look pretty interesting. I can put
in 3hours/day on this to wrap it up before my semester starts.

I’m at a reasonable level with BaKoMa TEX too. It’s obvious that some
functionalities – especially matrix operations, or even long lines of math
derivations, will be much easier handwritten. This is fine, with figure input.

4.1 Lecture 16: Fast Fourier transform, ordinary
diffeqs, Euler method, Runge-Kutta

Recall that the discrete Fourier transform is

ck =
N−1∑

n=0

γn exp
(
−i

2πkn

N

)
.

Fourier analysis just refers to analyzing the distinct components that
contribute to a periodic phenomena. In other words, it’s about expression a
function as a sum of periodic components, and then recovering those com-
ponents. A simple example would be to consider a single-frequency whistle.

83

An audio detector that senses compressions and rarefractions of air would
produce a sinusoidal voltage when this whistle is blown. Taking the DFT
of that signal would yield a single-frequency peak in the whistle’s frequency
spectrum. This gets useful when combining many periodic signals together.

The Python program (available to the people taking the class) had a for-
loop for each coefficient, and N terms in the sum, implying N2 operations
would be required to get all the coefficients. If we’re not willing to wait for
more than 1 billion operations, then we can do a DFT for N2 = 109 =⇒
N ≈ 32000 samples. This isn’t too much - about one second of audio.

The fast Fourier transform (FFT) is a DFT-solving algorithm for cutting
the number of computations needed for N points from 2N2 to 2N ln n. It
was discovered by Cooley and Tukey in 1965, although Gauss had pointed
at the key step in the algorithm in 1805.

The algorithm is easiest to describe when the number of samples is a
power of two. Let N = 2m, for m an integer. Consider the sum in the DFT
equation, and divide it into 2 groups of even and odd terms. Consider the
even terms first, where n = 2r, for r ∈ {0, ..., N/2 − 1}. Then

Ek =
N/2−1∑

r=0

y2r exp
(
−i

2πk(2r)
N

)

=
N/2−1∑

r=0

y2r exp
(
−i

2πkr

N/2

)
≡ Ek,modN/2.

Note that this is just another DFT, with N/2 samples instead of N . Then
look at the odd terms:

N/2−1∑

r=0

y2r+1 exp
(
−i

2πk(2r + 1)
N

)
= e−i2πk/N

N/2−1∑

r=0

y2r+1 exp
(
−i

2πkr

N/2

)

= e−i2πk/NOk

where Ok is another DFT with N/2 sample points. Call this Ok,modN/2. So
then

ck = Ek,modN/2 + e−i2πk/NOk,modN/2

= Ek,modN/2 + W k
nOk,modN/2.

We can summarize what we have in terms of a diagram. Let

84

denote a N -point DFT. The output are the DFT of the input. Then to
compute c0, we do

Figure 4.1: “Butterfly” diagram for FFT.

This diagram specifies that recursion. The starting point is DFT1 which
is just the identity transformation. Then at the mth stage that are O(N)
calculations. There are ? ln N stages, meaning that we have O(N ln N)
operations. In other words, it’s nearly linear!

For example, if we have N = 106 samples to process, then the naive
way would require 1012 operations. This is highly nontrivial for a typical
computer, and not practical. But N ln N = 107, since the natural logarithm
of anything big is like, 10. This can then be done in under a second! The
inverse DFT can be done in the same way.

Numpy provides numpy.fft as a FFT package. Skimming the documen-
tation, you’ll find there are different types of FFTs within it. Rfft computes

85

http://docs.scipy.org/doc/numpy/reference/routines.fft.html#nameddest=module-numpy.fft
http://docs.scipy.org/doc/numpy/reference/routines.fft.html#nameddest=module-numpy.fft

the FFT for a set of real numbers, and returns the first half (since the
other half are complex conjugates). You can also use fft and ifft to calcu-
late Foruier transforms of complex data. There are also functions for two
dimensional transforms, and well as functions for higher dimensions.

4.1.1 Ch. 8: Solving Ordinary Differential Equations

Consider the first-order equation

dx

dt
=

2x

t
+

3x2

t3
.

It is not separable, and it’s also nonlinear, so we need to use computational
methods to solve it.

The general form for a first-order differential equation is

dx

dt
= f(x, t).

To calculate a full solution, we need a boundary condition, e.g., the value of
x at one particular value of t (usually t = 0).

Euler’s method

Suppose we have to solve dx
dt = f(x, t), and we’re given an initial condition.

Then Taylor expand x(t + h) about t, to get

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) + ...

= x(t) + hf(x, t) + O(h2),

so if we neglect O(h2) terms, we get

x(t + h) = x(t) + hf(x, t).

So if we know x at time t, we can just use this equation to iterate. If h is
small enough, this does pretty well. It’s called Euler’s method. There’s an
example in 2-euler.py, for dx/dt = −x3 + sin t, but it’s not online !. So
we write our own:
#Numerical a n a l y s i s o f dx/dt = −x∗∗3 + s in (t)
import numpy as np
import matp lo t l ib . pyplot as p l t

de f f (x , t) :

86

	Lectures 1-5
	Lecture 1: First Programs, Rydberg Lines
	On to Ch 2

	Lecture 2: Basics, contd
	Height of ball, dropped from tower height h
	Packages
	Example: Converting Polar to Cartesian
	Built-in Functions: if, elif, else, while, break

	Lecture 3
	Multidimensional Arrays
	Reading Arrays from Files
	Array Arithmetic
	Slicing Elements from Lists or Arrays
	For loops

	Lecture 4: for loops, range, plotting
	Using for loops to compute sums
	User-defined Functions
	Good programming style
	Graphics: Simple Plots (Ch.3)
	Importing data from file and plotting
	Changing features of graphs
	Scatter Plots
	Density plot

	Lecture 5: wave interference, Mandelbrot set
	Plotting the Mandelbrot set
	Accuracy and Speed (Ch.4)
	Numerical error
	Program Speed
	Matrix multiplication

	Lectures 6-10
	Lecture 6: 3D plotting with visual package, integral approximation
	Chapter 5: Integration (lec 6)
	Trapezoidal rule
	Simpson's Rule
	Quantifying error bounds

	Lecture 7: Integration techniques
	Choosing the Number of Steps for an Integral
	Romberg Integration

	Lecture 8: Higher-order integration methods, and Gaussian quadrature
	Gauss Quadratures

	Lecture 9: Choosing integration methods; integrals for infinite ranges; derivatives
	Computing integrals over infinite ranges
	Multiple Integrals
	Derivatives (finite difference and more)

	Lecture 10: Higher order derivatives, interpolations, Gaussian elimination
	Interpolation
	Chapter 6! Solving linear equations

	Lectures 11-15
	Lecture 11: LU decomposition
	Calculating matrix inverses
	Eigenvalues and eigenvectors: QR algorithm
	Description of QR algorithm

	Lecture 12: Solving nonlinear equations
	Rate of convergence for relaxation method
	Relaxation method for 2 or more variables
	Bisection method
	Newton's method

	Lecture 13: Secant method; generalized Newton's; semidefinite programming
	Newton's method for multiple variables
	Semidefinite programming

	Lecture 14: more semidefinite programming
	Lecture 15: Fourier series and transforms
	Discrete Fourier transforms
	2D Fourier transform

	Lectures 16-20
	Lecture 16: Fast Fourier transform, ordinary diffeqs, Euler method, Runge-Kutta
	Ch. 8: Solving Ordinary Differential Equations

	Lecture 17: Simultaneous ordinary diffeqs, adaptive step size Runge-Kutta, leap frog method.
	Second order and higher diffeqs
	Other variations: leap-frog method

	Lecture 18: Leap frog & energy conservation, Verlet method, modified midpoint method, Bulirsch-Stoer technique
	Verlet method
	Modified midpoint method
	Bulirsch-Stoer Method

	Lecture 19: Boundary value problems, shooting method, partial diffeqs, finite differences
	Shooting method
	Chapter 9: Partial differential equations.
	Method of finite differences

	Lecture 20: Gauss-Seidel, initial value problems, forward time centered space method, numerical stability analysis.
	Gauss-Seidel method (GS)
	Initial value problems
	Numerical stability analysis

	Assessment and next steps

