
3.5 Lecture 15: Fourier series and transforms

Fourier transforms are useful for signal analysis, and are also an important
tool for solving differential equations. First let’s recall what Fourier series
can do: any periodic function f(x) defined on a finite interval 0 ≤ x ≤ L
can be written as a Fourier series.

If f(x) is symmetric about the midpoint at L/2, then we can write

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)
,

where {αk} is the set of coefficients. If f(x) is antisymmetric about the
midpoint, then we have

f(x) =
∞∑

k=1

βk sin
(

2πkx

L

)

So we can write a function with no symmetry as

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)
+

∞∑

k=1

βk sin
(

2πkx

L

)

and then making using of cos θ = (eiθ + e−iθ)/2 and sin θ = (eiθ − eiθ)/2i to
write

f(x) =
∞∑

k=0

αk

[
exp

(
i
2πkx

L

)
+ exp

(
−i

2πkx

L

)]

+
i

2

∞∑

k=1

βk

[
exp

(
−i

2πkx

L

)
− exp

(
i
2πkx

L

)]

From which point we can collect terms and write it as

f(x) =
∞∑

k=−∞
γk exp

(
i
2πkx

L

)

where

γk =

⎧
⎪⎨

⎪⎩

1
2(α−k + iβ−k), k < 0
α0, k = 0
1
2(α−k − iβ−k), k > 0.
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Fourier series can only be used for periodic functions! To extend to non-
periodic ones, just pick out an interval of a function and repeat it infinitely
so that it becomes periodic.

How do we calculate the coefficients, γk? Just use the fact that {e−i 2πkx
L }k

constitutes an orthonormal basis for the space [0, L]. That is, consider that
∫ L

0
f(x) exp

(
−i

2πkx

L

)
=

∞∑

k′=−∞
γk′

∫ L

0
exp

(
i
2π(k′ − k)x

L

)
dx.

If k′ ̸= k, then
∫ L

0
exp

(
i
2π(k′ − k)x

L

)
dx =

L

i2π(k′ − k)

[
exp

(
i
2π(k′ − k)x

L

)]L

0

=
L

i2π(k′ − k)
[
exp(i2π(k′ − k)) − 1

]

= 0 since e2πin = 1 ∀n ∈ Z

However, if k′ = k, then the integral is equal to L. In this case,
∫ L

0
f(x) exp

(
−i

2πkx

L

)
dx = Lγk

or

γk =
1
L

∫ L

0
f(x) exp

(
−i

2πkx

L

)
dx.

3.5.1 Discrete Fourier transforms

There are many cases in which it isn’t possible to calculate the coefficients
γk analytically. So we can use numerical methods. It turns out that ap-
proximations with the trapezoidal rule is equivalent to the discrete Fourier
transform.

Consider N slices of width h = L/N. Applying the trapezoidal rule gives

γk =
1
L

(
L

N

) [
1
2
f(0) +

1
2
f(L) +

N−1∑

n=1

f(xn) exp
(
−i

2πkxn

L

)]

when the sample point positions are xn = nL/N. Since f(x) is periodic, we
have f(0) = f(L), so then above simplifies to

γk =
1
N

N−1∑

n=0

f(xn) exp
(
−i

2πkxn

L

)
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c_k  =  sum_{n=0}^{N-1}    y_n    exp( -i 2pi k n/N)

Note that 1/N was removed, this is the convention

This is the
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We can use this to evaluate coefficients, at least in cases with evenly sampled
data (pretty frequent). It’s also worth noting that while these results were
derived using the trapezoidal rule, there is a sense in which that are exact.
Recall that

N−1∑

k=0

ak =
1 − aN

1 − a
, a ̸= 1,

then
N−1∑

k=0

(
ei 2πm

N

)k
=

1 − ei2πm

1 − ei2πm/N
= 0,

since m is an integer, making the numerator zero. In the case that m = 0,
or is a multiple of N , then the sum is N. So

N−1∑

k=0

exp
(

i
2πkm

N

)
=

{
N if m = 0, N, 2N, ...

0 else

Then consider the sum

N−1∑

k=0

ck exp
(

i
2πkn

N

)
=

N−1∑

k=0

[
N−1∑

n′=0

γn′ exp
(
−i

2πkxn′

L

)]
exp

(
i
2πkn

N

)

=
N−1∑

n′=0

γn′

N−1∑

k=0

exp
(

i2πk(
n − n′

N
)

)

=
N−1∑

n′=0

yn′δn,n′N

= Nyn

=⇒ yn =
1
N

N−1∑

k=0

ck exp
(

i
2πkn

N

)
.

This is the inverse discrete Fourier transform (inv. DFT).
This proves that the matrix with entries

Ukn =
1√
N

exp
(
−i

2πkn

N

)

is a unitary matrix. So we can recover the original values exactly by per-
forming the inverse DFT. So you can move freely back and force between
the original values and the Fourier coefficients.
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• We can compute this on a computer because the sum is finite

• This discrete formula only gives sample values yn = f(xn). So if the
function is oscillating rapidly between samples, the DFT won’t capture
this, so DFT just gives some idea of the function.

If the function is real, then can use this symmetry to simplify further. Sup-
pose all yn are real and consider ck for N/2 < k ≤ N − 1, so k = N − r for
1 ≤ r < N/2. Then

cN−r =
N−1∑

n=0

yn exp
(
−i

2π(N − r)n
N

)

=
N−1∑

n=0

yn exp (−i2πn ) exp
(

i
2πrn

N

)

=
N−1∑

n=0

yn exp
(

i
2πrn

N

)
= c′r

so then cN−1 = c1′ , cN−2 = c′2, etc. So when calculating the DFT of a real
function, we only have to calculate ck for 0 ≤ k < N/2. However, if the yn

are complex, then we need to calculate all N Fourier coefficients.
Bring up dft.py. This program uses exp from the cmath package, which

isn’t the quickest way to calculate the DFT. We can instead do FFT. If we
shift the positions of the sample points. then not much changes. Suppose
that instead of taking samples at xn = nL/N, we take them at x′

n = xn +∆.
Then

ck =
N−1∑

n=0

f(xn + ∆) exp
(
−i

2πk(xn + ∆)
L

)

= exp
(
−i

2πk∆
L

) N−1∑

n=0

f(x′
n) exp

(
−i

2πkxn

L

)

= exp
(
−i

2πk∆
L

) N−1∑

n=0

y′n exp
(
−i

2πkxn

L

)
,

where y′n = f(x′
n) are the new samples. We can absorb the phase factors into

the coefficients as c′k = exp
(
i2πk∆

L

)
ck so that c′k =

∑N−1
n=0 y′n exp

(
−i2πkn

L

)

so that DFT is independent of where the samples are taken.
We can distinguish between Type-I DFT where we divide interval [0, L]

into N slices and take samples at endpoints, and a Type-II where we take
samples at the midpoints of slices.
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3.5.2 2D Fourier transform

It’s useful for image processing, for instance in astronomy (classic case: Hub-
ble image correction). Suppose we have M × N grid of samples ymn. First
do a FT on the rows:

c′ml =
N−1∑

n=0

ymn exp
(
−i

2πln

N

)
,

and then FT the m variable:

ckl =
N−1∑

n=0

c′ml exp
(
−i

2πkm

M

)
.

Combined, these read

ckl =
N−1∑

m=0

N−1∑

n=0

ymn exp
(
−i2π

(
km

M
+

ln

N

) )
.

What is the FT doing? Breaking down a signal into its frequency com-
ponents, like a signal analyzer. Bring up dft.py. The first spike is the
frequency of the main wave, and the others are harmonics.

Discrete cosine transform

Recall that if a function is symmetric about x = L/2 (the midpoint) then
we can write

f(x) =
∞∑

k=0

αk cos
(

2πkx

L

)

We cannot do this for all functions. However, if we’d like to do so, we can
by just sample a function over an interval, and then adding it to its mirror
image, i.e.,
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So we make the function symmetric, and when the samples are, we have
y0 = yN , y1 = yN−1, y2 = yN−2, etc. We then get for the DFT:

ck =
N−1∑

n=0

yn exp
(
−i

2πkn

N

)

=
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N−1∑

n=N/2+1

yn exp
(
−i

2πkn

N

)

=
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N∑

n=N/2+1

yN−n exp
(

i
2πk(N − n)

N

)

where in the final line we used exp(i2πk) = 1. Make a change of variables
N − n → n to get

ck =
N/2∑

n=0

yn exp
(
−i

2πkn

N

)
+

N/2−1∑

n=1

yn exp
(

i
2πkn

N

)

= y0 + yN/2 cos
(

2πk(N/2)
N

)
+ 2

N/2−1∑

n=1

yn cos
(

2πkn

N

)
.

Usually though, the discrete cosine transform is applied to real values, which
means that the ck coefficients are real. In this case, we have the cN−r =
c′r = cr, and the inverse transform is

yn =
1
N

N−1∑

k=0

ck exp
(

i
2πkn

N

)

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N−1∑

k=N/2+1

ck exp
(

i
2πkn

N

)⎤

⎦

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N−1∑

k=N/2+1

cN−k exp
(
−i

2π(N − k)n
N

)⎤

⎦

=
1
N

⎡

⎣
N/2∑

k=0

ck exp
(

i
2πkn

N

)
+

N/2−1∑

k=1

ck exp
(
−i

2πkn

N

)⎤

⎦

=
1
N

⎡

⎣c0 + cN/2 cos
(

2πn(N/2)
N

)
+ 2

N/2−1∑

k=1

ck cos
(

2πkn

N

)⎤

⎦
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which is the inverse discrete cosine transform. It has so much symmetry that
the DCT is the same as its inverse! If we take the samples at midpoints,
then we can show that the coefficients are

ak = 2
N/2−1∑

n=0

yn cos
(

2πk(n + 1/2)
N

)
,

and the inverse transform is

yn =
1
N

⎡

⎣a0 + 2
N/2−1∑

k=1

ak cos
(

2πk(n + 1/2)
N

) ⎤

⎦ .

A nice feature of the DCT is that it does not assume that the function
is periodic. Neither does the DFT, but it does force the first and last values
to be the same, which can create a large discontinuity. The DCT does not
do this. N.b. we can also calculate the discrete sine transform, but this is
rarely used because it forces the endpoints to zero.
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DCT have important technological technological uses. They form the mathematical basis for the computer image file called JPEG (Joint Photographic Experts Group), used to store images in the www. 

Digital images are represented as regular grids of dots (pixels) of different shade, and the shades are stored on the computer as ordinary numbers.

Because there are too many numbers to store. We can instead store using the DCT.

The JPEG format works by dividing the pixels in an image into blocks and performing DCTs on the blocks, then looking for coefficients a_k that are small and can be discarded.
The remaining coefficients are stored in a file. Since many a_k’s are small, the file is smaller.
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A variant of the same technique is used to compress moving pictures (films, videos) using MPEG.
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Chapter 4

Lectures 16-20

We’ve gotten pretty far in the lecture notes (3/4 complete), and a little over
halfway in the homeworks. In all honestly, I’m feeling a bit burned out on
the homeworks; likely because of both having written crap code on the first
half of HW3 without internet access, and jamming through the lectures in
cars and planes without taking time to focus on the content. But this means
a couple things: (1) I’m comfortable enough writing code in Python to do
non-trivial things without constantly checking StackExchange, and (2) I’ve
gotten pretty damn far. We’re going to keep pushing, with more of a concept
focus. I’m still committing to doing the good problems from homeworks 3
and 4, and most of the remaining lectures look pretty interesting. I can put
in 3hours/day on this to wrap it up before my semester starts.

I’m at a reasonable level with BaKoMa TEX too. It’s obvious that some
functionalities – especially matrix operations, or even long lines of math
derivations, will be much easier handwritten. This is fine, with figure input.

4.1 Lecture 16: Fast Fourier transform, ordinary
diffeqs, Euler method, Runge-Kutta

Recall that the discrete Fourier transform is

ck =
N−1∑

n=0

γn exp
(
−i

2πkn

N

)
.

Fourier analysis just refers to analyzing the distinct components that
contribute to a periodic phenomena. In other words, it’s about expression a
function as a sum of periodic components, and then recovering those com-
ponents. A simple example would be to consider a single-frequency whistle.
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An audio detector that senses compressions and rarefractions of air would
produce a sinusoidal voltage when this whistle is blown. Taking the DFT
of that signal would yield a single-frequency peak in the whistle’s frequency
spectrum. This gets useful when combining many periodic signals together.

The Python program (available to the people taking the class) had a for-
loop for each coefficient, and N terms in the sum, implying N2 operations
would be required to get all the coefficients. If we’re not willing to wait for
more than 1 billion operations, then we can do a DFT for N2 = 109 =⇒
N ≈ 32000 samples. This isn’t too much - about one second of audio.

The fast Fourier transform (FFT) is a DFT-solving algorithm for cutting
the number of computations needed for N points from 2N2 to 2N ln n. It
was discovered by Cooley and Tukey in 1965, although Gauss had pointed
at the key step in the algorithm in 1805.

The algorithm is easiest to describe when the number of samples is a
power of two. Let N = 2m, for m an integer. Consider the sum in the DFT
equation, and divide it into 2 groups of even and odd terms. Consider the
even terms first, where n = 2r, for r ∈ {0, ..., N/2 − 1}. Then

Ek =
N/2−1∑

r=0

y2r exp
(
−i

2πk(2r)
N

)

=
N/2−1∑

r=0

y2r exp
(
−i

2πkr

N/2

)
≡ Ek,modN/2.

Note that this is just another DFT, with N/2 samples instead of N . Then
look at the odd terms:

N/2−1∑

r=0

y2r+1 exp
(
−i

2πk(2r + 1)
N

)
= e−i2πk/N

N/2−1∑

r=0

y2r+1 exp
(
−i

2πkr

N/2

)

= e−i2πk/NOk

where Ok is another DFT with N/2 sample points. Call this Ok,modN/2. So
then

ck = Ek,modN/2 + e−i2πk/NOk,modN/2

= Ek,modN/2 + W k
nOk,modN/2.

We can summarize what we have in terms of a diagram. Let
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denote a N -point DFT. The output are the DFT of the input. Then to
compute c0, we do

Figure 4.1: “Butterfly” diagram for FFT.

This diagram specifies that recursion. The starting point is DFT1 which
is just the identity transformation. Then at the mth stage that are O(N)
calculations. There are ? ln N stages, meaning that we have O(N ln N)
operations. In other words, it’s nearly linear!

For example, if we have N = 106 samples to process, then the naive
way would require 1012 operations. This is highly nontrivial for a typical
computer, and not practical. But N ln N = 107, since the natural logarithm
of anything big is like, 10. This can then be done in under a second! The
inverse DFT can be done in the same way.

Numpy provides numpy.fft as a FFT package. Skimming the documen-
tation, you’ll find there are different types of FFTs within it. Rfft computes
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the FFT for a set of real numbers, and returns the first half (since the
other half are complex conjugates). You can also use fft and ifft to calcu-
late Foruier transforms of complex data. There are also functions for two
dimensional transforms, and well as functions for higher dimensions.

4.1.1 Ch. 8: Solving Ordinary Differential Equations

Consider the first-order equation

dx

dt
=

2x

t
+

3x2

t3
.

It is not separable, and it’s also nonlinear, so we need to use computational
methods to solve it.

The general form for a first-order differential equation is

dx

dt
= f(x, t).

To calculate a full solution, we need a boundary condition, e.g., the value of
x at one particular value of t (usually t = 0).

Euler’s method

Suppose we have to solve dx
dt = f(x, t), and we’re given an initial condition.

Then Taylor expand x(t + h) about t, to get

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) + ...

= x(t) + hf(x, t) + O(h2),

so if we neglect O(h2) terms, we get

x(t + h) = x(t) + hf(x, t).

So if we know x at time t, we can just use this equation to iterate. If h is
small enough, this does pretty well. It’s called Euler’s method. There’s an
example in 2-euler.py, for dx/dt = −x3 + sin t, but it’s not online !. So
we write our own:
#Numerical a n a l y s i s o f dx/dt = −x∗∗3 + s in ( t )
import numpy as np
import matp lo t l ib . pyplot as p l t

de f f (x , t ) :
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