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Abstract. This paper describes several approaches to analyzing the frequency, or pitch, content of
the sounds produced by musical instruments. The classic method, using Fourier analysis,
identifies fundamentals and overtones of individual notes. A second method, using spectro-
grams, analyzes the changes in fundamentals and overtones over time as several notes are
played. Spectrograms produce a time-frequency description of a musical passage. A third
method, using scalograms, produces far more detailed time-frequency descriptions within
the region of the time-frequency plane typically occupied by musical sounds. Scalograms
allow one to zoom in on selected regions of the time-frequency plane in a more flexible
manner than is possible with spectrograms, and they have a natural interpretation in terms
of a musical scale.

All three of these techniques will be employed in analyzing music played on a piano, a
flute, and a guitar. The two time-frequency methods, spectrograms and scalograms, will
be shown to extend the classic Fourier approach, providing time-frequency portraits of the
sounds produced by these instruments. Among other advantages, these time-frequency
portraits seem to correlate well with our perceptions of the sounds produced by these in-
struments and of the differences between each instrument.

There are many additional applications of time-frequency methods, such as compres-
sion of audio and resolution of closely spaced spectral lines in spectroscopy. Brief discus-
sions of these additional applications are included in the paper.

Key words. time-frequency analysis, spectrogram, scalogram, continuous wavelet transform, fast
Fourier transform, Fourier series
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1. Introduction. In this paper we shall describe several different approaches to
analyzing the sound of musical instruments, ranging from the classic method of Fourier
to the most up-to-date methods of dynamic spectra and wavelets. These methods will
be applied to sounds produced from a piano, a flute, and a guitar. Although, with
the possible exception of the spectroscopy example, the results in this paper are
not new, nevertheless we hope that it will provide an enlightening discussion of the
mathematical analysis of music.

The contents of the paper are as follows. In section 2 we review basic notions
of pitch and frequency. The musical concepts here are fundamentals and overtones.
Mathematically, these concepts are described via Fourier coefficients, and their role
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458 JEREMY F. ALM AND JAMES S. WALKER

in producing sounds is modeled via Fourier series. Although Fourier series are an es-
sential tool, they do have limitations; in particular, they are not effective at capturing
abrupt changes in the frequency content of sounds. These abrupt changes occur, for
instance, in transitions between individual notes. In section 3 we describe a modern
method of time-frequency analysis, known as a spectrogram, which better handles
changes in frequency content over time. Spectrograms provide a time-frequency por-
trait of musical sounds, gracefully handling the problem of describing quick transitions
between notes. They provide a type of “fingerprint” of sounds from various instru-
ments. These fingerprints allow us to distinguish one instrument from another. While
spectrograms are a fine tool for many situations, they are not closely correlated with
the frequencies (pitches) typically found on musical scales, and there are cases where
this leads to problems. In section 4, we describe a method of time-frequency analysis,
known as scalograms, which does correlate well with musical scale frequencies. Scalo-
grams yield a powerful new approach, based on the mathematical theory of wavelets,
which can solve problems lying beyond the scope of either Fourier series or spectro-
grams.

The figures in this paper were all generated with the software Fawav, which can
be downloaded for free from the website listed in [24]. That website also contains
copies of the sound recordings of the instruments we discuss. Using Fawav, these
sound recordings can be both played and analyzed with the techniques described in
this paper.

2. Pitch and Frequency—Fourier Series and FFTs. In this section we review
some basic concepts in analyzing music: the concepts of pitch and frequency and
their relation to Fourier coefficients. Since there are innumerable references for these
concepts (e.g., [25], [26], [16], [18]), we shall aim for succinctness rather than thor-
oughness.

2.1. The Connection between Pitch and Frequency. As its name implies, a
tuning fork is used for tuning the pitch of notes from musical instruments. The sound
from a tuning fork can be recorded with an oscilloscope attached to a microphone.
This will produce a graph similar to the one shown in Figure 2.1(a). The graph in
Figure 2.1(a) was created by plotting the function 100 sin 2πνt, a sinusoid of frequency
ν = 440 cycles/sec (Hz). Played over the computer’s sound system,1 this finite seg-
ment of a sinusoid produces a tone identical to a tuning fork with a pitch of A4 on the
well-tempered scale. A pure tone having a single pitch is thus associated with a single
frequency, in this case 440 Hz. In Figure 2.1(b) we show a computer calculation of the
Fourier spectrum of the sinusoid in (a); the single peak at 440 Hz is clearly evident.
The formulas used to generate this Fourier spectrum will be discussed below. For
now, it is important to take note of its precise identification of the single frequency
present in the pure tone.

Unlike tuning forks, sounds from musical instruments are time-evolving superpo-
sitions of several pure tones, or sinusoidal waves. For example, in Figure 2.2(b) we
show the Fourier spectrum of the piano note shown in Figure 2.2(a). In this spectrum,
there are peaks located at the (approximate) frequencies 330 Hz, 660 Hz, 990 Hz, 1320
Hz, and 1620 Hz. Notice that these frequencies are all integral multiples of the small-
est frequency, 330 Hz. This base frequency, 330 Hz, is called the fundamental. In this
case, it is nearly equal to the standard frequency of 329.628 Hz for the E4 note [16,
p. 48]. The integral multiples of this fundamental are called overtones. In this case,

1Some further details on how computers play sound signals will be provided below.
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Fig. 2.1 Fourier analysis of a pure tone. (a) Graph of a finite segment of a pure tone, 440 Hz.
(b) Computer-calculated Fourier spectrum.
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(b) Spectrum of piano note

Fig. 2.2 Fourier analysis of the piano note E4 (E above middle C). (Note: The vertical scales of
all spectra shown in this paper have been normalized to the same range.)

the first overtone is 660 Hz, the second overtone is 990 Hz, and so on. We now turn
to the mathematical theory that captures these musical notions of fundamentals and
overtones, the theory of Fourier series.

2.2. Fourier Series. The classic mathematical theory for describing musical notes
is that of Fourier series. Given a sound signal f(t) (such as a musical note or chord)
defined on the interval [0,Ω], its Fourier series is

(2.1) c0 +
∞∑
n=1

{
an cos

2πnt
Ω

+ bn sin
2πnt
Ω

}

with Fourier coefficients c0, an, bn defined by

c0 =
1
Ω

∫ Ω

0
f(t) dt,

an =
2
Ω

∫ Ω

0
f(t) cos

2πnt
Ω

dt, n = 1, 2, 3, . . . ,

bn =
2
Ω

∫ Ω

0
f(t) sin

2πnt
Ω

dt, n = 1, 2, 3, . . . .

(2.2)

Each term {an cos(2πnt/Ω) + bn sin(2πnt/Ω)} has a fundamental period of Ω/n,
and hence a frequency in time of n/Ω. Thus (2.1) is a superposition of waves of
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460 JEREMY F. ALM AND JAMES S. WALKER

frequencies 1/Ω, 2/Ω, 3/Ω, . . . . (The constant c0 represents a constant background
level, corresponding to a constant air pressure level; see section 2.3.) These frequen-
cies in the Fourier series are thus integral multiples of a fundamental frequency 1/Ω.
It is well known that for a differentiable function f(t), the Fourier series for f(t) will
converge to it at each point in (0,Ω). Furthermore, if f(t) is square-integrable, then
its Fourier series converges to it in mean-square.2 This latter result will certainly
apply to musical sound signals f(t).

It is more convenient to rewrite (2.1) and (2.2) using complex exponentials. Via
Euler’s formulas,

eiθ = cos θ + i sin θ, e−iθ = cos θ − i sin θ,

cos θ =
1
2
eiθ +

1
2
e−iθ, sin θ =

i

2
e−iθ − i

2
eiθ,

it is a simple exercise in algebra to rewrite the Fourier series in (2.1) as

(2.3) c0 +
∞∑
n=1

{
cne

i2πnt/Ω + c−ne
−i2πnt/Ω

}

with complex Fourier coefficients

(2.4) cn =
1
Ω

∫ Ω

0
f(t)e−i2πnt/Ω dt, n = 0,±1,±2, . . . .

The Fourier series in (2.3) is identical, term for term, to the Fourier series in (2.1), and
the complex Fourier coefficients are related to those defined in (2.2) by the formula
cn = (an + ibn)/2. Since a sound signal f is real-valued, it follows from (2.4) that
c−n = cn. Consequently, the negatively indexed complex Fourier coefficients add
no new significant information, since they are simply the complex conjugates of the
positively indexed coefficients.

One of the most celebrated results of Fourier series is Parseval’s equality [19,
Chap. 4]:

(2.5)
1
Ω

∫ Ω

0
|f(t)|2 dt = |c0|2 +

∞∑
n=1

{
|cn|2 + |c−n|2

}
.

This equality has a beautiful physical interpretation. Define the energy of a function
g over [0,Ω] to be

∫ Ω
0 |g(t)|

2 dt. Then it is easy to see that Ω · |cn|2 is the energy of
the complex exponential cnei2πnt/Ω. Hence, (2.5) shows that the energy of the sound
signal f is equal to the sum of the energies of the complex exponentials (including the
constant) that make up its Fourier series. It is important to note that |c−n|2 = |cn|2,
so Parseval’s equality can also be written as

(2.6)
1
Ω

∫ Ω

0
|f(t)|2 dt = |c0|2 +

∞∑
n=1

2|cn|2.

2By convergence in mean-square, we mean that the partial sums

SN (t) = c0 +
N∑
n=1

{
an cos

2πnt
Ω

+ bn sin
2πnt
Ω

}

satisfy limN→∞ 1
Ω

∫ Ω
0 |f(t) − SN (t)|

2 dt = 0. Further details can be found in [25, Chap. 2] or [19,
Chap. 4].
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TIME-FREQUENCY ANALYSIS OF MUSICAL INSTRUMENTS 461

Thus, the Fourier series spectrum {2|cn|2}n≥1 completely captures the energies in
the frequencies that make up the audio signal. Since |c0|2 is the energy of a constant
background and is inaudible,3 it is ignored here. It is this Fourier series spectrum
that is calculated and displayed in Figures 2.1(b) and 2.2(b), and in every subsequent
figure, it is referred to as a spectrum.

2.3. FFTs. Whether for good or ill, we have come to live in a digital world.
The audio signals of piano notes discussed above were recorded in digital form and
their Fourier spectra were computed digitally. The method of digitally computing
Fourier spectra is widely referred to as the FFT (short for fast Fourier transform).
An FFT provides an extremely efficient method for computing approximations to
Fourier series coefficients; these approximations are called DFTs (short for discrete
Fourier transforms). We shall briefly outline the ideas behind DFTs; for proofs and
more details see [26], [4], [5], or [1].

A DFT is defined via Riemann sum approximations of the integrals in (2.4) for
the Fourier coefficients. For a (large) positive integer N , let tk = kΩ/N for k =
0, 1, 2, . . . , N − 1, and let ∆t = Ω/N . Then the nth Fourier coefficient cn in (2.4) is
approximated as follows:

cn ≈
1
Ω

N−1∑
k=0

f(tk)e−i2πntk/Ω ∆t

=
1
N

N−1∑
k=0

f(tk)e−i2πnk/N .

The last quantity above is the DFT of the finite sequence of numbers {f(tk)}. That
is, we define the DFT of a sequence {fk} of N numbers by

(2.7) F [n] =
1
N

N−1∑
k=0

fk e
−i2πnk/N .

The DFT is the sequence of numbers {F [n]}, and we see from the discussion above
that the Fourier coefficients of a function f can be approximated by a DFT. In par-
ticular, the spectra {2|cn|2}n≥1 shown in the figures above were obtained via DFT
approximations {2|F [n]|2}n≥1 (where fk = f(tk) for each k).

Besides being used for calculating DFTs, the finite set of discrete values {f(tk)}
is also used for creating a digital sound file, playable by a computer sound system.
A computer sound system is programmed to play a fixed number of equally spaced
volume levels—typically either 256 = 28 (8-bit sound) or 65536 = 216 (16-bit sound).
These volume levels correspond to air pressure levels that are fluctuating about a con-
stant background level (hence there are negative as well as positive volume levels). By
approximating the values of {f(tk)} by finite-precision numbers, the fluctuations of air
pressure due to the sound signal are then describable by these volume levels. Because
there are an integral number of equally spaced volume levels, they can be mapped to a
computer file using integers as index values to the corresponding volume levels—these
integers correspond to multiples of the computer’s unit volume level. A computer’s

3The reason that c0 is inaudible is that our hearing responds linearly—via a resonance effect in
the ear’s basilar membrane—to fluctuations in air pressure caused by the sound signal. The constant
c0, since it does not fluctuate, is therefore inaudible.
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462 JEREMY F. ALM AND JAMES S. WALKER

sound system uses these integers to drive the speakers with time-varying volume lev-
els, thus reconstructing a recorded sound signal.4 For a more detailed discussion of
the process just described, known technically as analog-to-digital conversion, see [21].

Two noteworthy properties of DFTs are: (1) they can be inverted, and (2) they
preserve energy (up to a scale factor). The inversion formula for the DFT is

(2.8) fk =
N−1∑
n=0

F [n]ei2πnk/N

and the conservation of energy property is

(2.9)
1
N

N−1∑
k=0

|fk|2 =
N−1∑
n=0

|F [n]|2.

Exercise: Work out the connection between (2.9) and Parseval’s equality (2.6).
Computer calculations of DFTs are done using a wide variety of algorithms that

are all referred to as FFTs. Using FFTs, the computation of DFTs can now be
done almost instantaneously. An important application of this rapid processing is in
calculating spectrograms.

3. Time-Frequency Analysis—Spectrograms. While Fourier spectra do an ex-
cellent job of identifying the frequency content of individual notes, they are not as
useful for analyzing several notes in a musical passage. For example, in Figure 3.1(a)
we show a graph of a recording of a piano playing the notes E4, F4, G4, and A4.
The spectrum from this musical passage is shown in Figure 3.1(b). Unlike the single
note case, it is not as easy here to assign fundamentals and overtones; in fact, the
spectrum in Figure 3.1(b) is a mixture of spectra from the individual notes.5 The
problem was succinctly analyzed by Ville [23], one of the founders of spectrogram
analysis, as follows (translation from [14, p. 63]):

If we consider a passage [of music] containing several measures. . . and if
a note, la for example, appears once in the passage, harmonic [Fourier]
analysis will give us the corresponding frequency with a certain amplitude
and phase, without localizing the la in time. But it is obvious that there
are moments during the passage when one does not hear the la. The
[Fourier] representation is nevertheless mathematically correct because the
phases of the notes near the la are arranged so as to destroy this note
through interference when it is not heard and to reinforce it, also through
interference, when it is heard. . . . Thus it is desirable to look for a mixed
definition of a signal . . . at each instance, a certain number of frequencies
are present, giving volume and timbre to the sound as it is heard; each
frequency is associated with a certain partition of time that defines the
intervals during which the corresponding note is emitted.

One way of implementing this “mixed definition of a signal” described by Ville is
to compute spectrograms, which are a moving sequence of local spectra for the signal.

4Examples of such recordings can be found in the sound files available at the website [24]. Using
Fawav the reader can plot these sound files as graphs and play them as audio.

5There is an analogy here to absorption and emission spectra in molecular spectroscopy, the
individual notes being analogous to spectra from individual atoms and the mixture of notes being
analogous to compound spectra from many constituent atoms. At the end of the paper we give an
example of resolving two closely spaced spectral lines, an important problem in spectroscopy.
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Fig. 3.1 Fourier analysis of a piano passage.

In order to isolate the individual notes in the musical passage, the sound signal f(t)
is multiplied by a succession of time-windows (or simply windows): {w(t − τm)},
m = 1, 2, . . . ,M . Each window w(t−τm) is equal to 1 in a time interval (τm−ε, τm+ε)
centered at τm and decreases smoothly down to 0 for t < τm−1 + δ and t > τm+1 − δ.
See Figure 3.2(b), where M = 9 windows are shown. As shown in this figure, we are
assuming here that the values {τm} are separated by a uniform distance ∆τ , although
this is not absolutely necessary. These windows also satisfy

(3.1)
M∑
m=1

w(t− τm) = 1

over the time interval [0,Ω]. Multiplying both sides of (3.1) by f(t) we see that

f(t) =
M∑
m=1

f(t)w(t− τm),

so the sound signal f(t) equals a sum of the subsignals f(t)w(t−τm), m = 1, 2, . . . ,M .
Each subsignal f(t)w(t− τm) is nonzero only within the interval [τm−1 + δ, τm+1 − δ]
centered on τm. In Figures 3.2(c) and (d), we show the process of producing one
subsignal f(t)w(t− τm).

Notice that in Figure 3.2(d) the subsignal f(t)w(t − τm) is shown as having a
restricted domain, a domain of [τm−1 + δ, τm+1 − δ]. The domain of each subsignal
f(t)w(t−τm) is restricted so that when an FFT is applied to the sequence {f(tk)w(tk−
τm)}, with points tk ∈ [τm−1, τm+1], then this FFT produces Fourier coefficients that
are localized to the time interval [τm−1 + δ, τm+1 − δ] for each m. This localization
in time of Fourier coefficients constitutes the spectrogram solution of the problem of
separating the spectra of the individual notes in the musical passage.

3.1. Spectrograms for a Piano and a Flute. In Figure 3.3(a) we show a spectro-
gram for the sequence of piano notes E4, F4, G4, and A4. The sound signal is plotted
at the bottom of the figure. It consists of 215 values {f(tk)} at equally spaced points
{tk} on the time interval [0, 1.486). Above the sound signal is a plot of the FFT spectra
{2|Fm[n]|2}, m = 1, 2, . . . ,M , obtained from the M subsignals {f(t)w(t− τm)}. The
larger values of these spectra are displayed more darkly; the white regions represent
values that are near zero in magnitude. The vertical scale on this figure is a frequency
scale (in Hz), and the horizontal scale is a time scale (in sec). This spectrogram thus
provides a description of the sound signal in the time-frequency plane.
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Fig. 3.2 Components of a spectrogram.

(a) Piano (b) Flute

Fig. 3.3 Two spectrograms.

As can be seen clearly in Figure 3.3(a), the spectra for the individual notes are
clearly separated in time. Similarly, in Figure 3.3(b), we can see a clear separation
of the spectra for these same notes played on a flute. In both cases, the spectra for
individual notes are clearly divided into groups of “line segments,” lying above each
note and corresponding to the fundamentals and overtones in each note.

It is interesting to compare these two spectrograms. There are clear differences
between the “attack” and the “decay” of the spectral line segments for the notes
played by the two instruments; these differences are visible in the two spectrograms.
For the piano there is a very prominent attack—due to the striking of the piano
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TIME-FREQUENCY ANALYSIS OF MUSICAL INSTRUMENTS 465

hammer on its strings—which is visible in the gray patches in its spectrogram near
the beginning of the fundamental and first overtone line segments for each note. These
gray patches (or “spectral smears”) can be termed anharmonic spectra, since they are
nonintegral multiples of the fundamental. (They arise from transient, nonlinear effects
during the attack of each note.) There is also a longer decay for the piano notes—due
to the slow damping down of the piano string vibrations—which is evident in the
overlapping of the time intervals underlying each note’s line segment. For the flute—
where notes arise from a standing wave within the flute created by a gentle breath
of the player and rapidly decay when this standing wave collapses at the end of the
player’s breath—the notes show little overlapping of spectral line segments. These
line segments exhibit a much gentler attack and much more rapid decay than for the
piano.6 It is well known that, in addition to the harmonic structure of fundamentals
and overtones, the precise features of attack and decay in notes are important factors
in human perception of musical quality. This comparison of a piano with a flute
illustrates how all of these features of musical notes can be quantitatively captured in
the time-frequency portraits provided by spectrograms.

3.2. Inversion of Spectrograms. We have shown above that a spectrogram pro-
vides a useful method of analysis, i.e., splitting of the signal into parts and processing
these parts, the parts being the subsignals {f(t)w(t − τm)} that are processed via
FFTs. Complementing this analysis, there is also synthesis, whereby the signal is
reconstructed from its constituent parts. This synthesis is an inversion process for
spectrograms: recovering the original sound signal f(t) from its spectrogram of FFTs
{Fm[n]}, m = 1, 2, . . . ,M . (Actually, to be precise, the values of f(tk) at discrete
points tk are recovered.) One important application of this inversion process is to the
compression of recorded music and speech.

In order to perform inversion, it is sufficient that the succession of windows {w(t−
τm)} satisfies

(3.2) A ≤
M∑
m=1

w(t− τm) ≤ B

for some positive constants A and B. The inequalities in (3.2) are a generalization
of (3.1). In practice, it has been found that some windows w (such as Hamming
or hanning windows [26, Chap. 4]), which satisfy (3.2), perform better for frequency
identification than windows that are required to satisfy the more stringent condition
(3.1).

Assuming that (3.2) holds, the largest possible constant A and the smallest pos-
sible constant B are called the frame bounds for the window w. We now prove that
(3.2) suffices for inversion, and we assume that A and B are frame bounds. Provided
B is not too large, performing the spectrogram analysis

(3.3) {f(tk)} 
→ {f(tk)w(tk − τm)}Mm=1 
→ {Fm[n]}Mm=1

will be numerically stable. Furthermore, performing inverse FFTs on each of the

6With a flute, the player can generally only produce one note at a time (monophonic), while with a
piano multiple notes can be played (polyphonic). The nonoverlapping of flute spectral line segments,
and their partial overlap for a piano, are clearly in consonance with the different phonic capabilities
of these two instruments. Furthermore, when multiple piano notes are played simultaneously (as in
a chord, see section 4.5), there are significant problems in pitch detection, due to a large overlap of
spectral line segments corresponding to different notes.
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466 JEREMY F. ALM AND JAMES S. WALKER

subsignal FFTs in (3.3) and adding the results together produces

(3.4)
M∑
m=1

f(tk)w(tk − τm) = f(tk)
M∑
m=1

w(tk − τm).

Because of the inequality A ≤
∑

w(tk − τm), we have 1/
∑

w(tk − τm) ≤ A−1.
Therefore, we can divide out the factor

∑
w(tk − τm) in (3.4) to obtain the discrete

values {f(tk)}. The constant A−1, provided it is not too large, ensures the numerical
stability of this division. Thus, (3.2) implies that spectrograms obtained from discrete
values of a sound signal are invertible.

When an analog sound signal f(t) is band-limited,7 then this signal f(t) can be
recovered from the discrete values {f(tk)} as well [26, Chap. 5]. This last step is
often unnecessary for digitally recorded sound because the only data available are the
discrete values {f(tk)}.

As an example of this inversion process for discrete data {f(tk)}, if the spectro-
gram in Figure 3.3(a) is inverted, then the maximum error between the original sound
data and the reconstructed values is less than 1.99× 10−10 for all points. Moreover,
if the reconstructed values are rounded to integers—because the original data in the
computer sound file were integers—then the error is zero!

One application of spectrogram inversion is to the compression of audio signals.
After discarding (setting to zero) all the values in a spectrogram with magnitudes
below a threshold value, the inversion procedure creates an approximation of the
original signal that uses significantly less data than the original signal. That is because
the thresholded spectrogram can be greatly compressed by removing the large amount
of redundancy created by all of the zero values arising from thresholding. In Figures
3.3(a) and (b), for example, all of the white pixels shown in the spectrograms stand for
zero values and that implies considerable redundancy for those spectrograms. Some of
the best results in audio compression are based on sophisticated generalizations of this
spectrogram technique; these techniques are called lapped orthogonal transform coding
or local cosine coding [13], [12], [28], [22]. Such audio compression techniques underlie
the real-time audio players and audio download sites available on the Internet.

4. Musical Scales and the Time-Frequency Plane—Scalograms. Although
spectrograms are profoundly useful, they do suffer from one drawback. They display
frequencies on a uniform scale, whereas musical scales such as the well-tempered scale
are based on a logarithmic scale for frequencies. We shall describe below how such
a logarithmic scale is related to human hearing and how it leads to a new type of
time-frequency analysis.

To illustrate how a uniform scale of frequencies can lead to problems, consider in
Figure 4.1(a) the spectrogram of the note E4 played on a guitar. In this spectrogram
there are a number of spectral line segments crowded together at the lower end of the
frequency scale. These line segments correspond to the lower frequency peaks in the
Fourier spectrum for the note in Figure 4.1(b). This spectrum shows a fundamental
at 321 Hz—which is close to the standard frequency for E4 of 329.628 Hz—and over-
tones at 642, 963, . . . , 2247 Hz. However, there are also peaks in the spectrum at lower
frequencies of 104, 191, and 215 Hz. It is these frequencies that are crowded together
in the spectral lines at the bottom of the spectrogram. These frequencies are (approx-
imately) integral divisors of some of the overtones listed above, since 215 ≈ 642/3,

7A signal is called band-limited if its spectrum is zero-valued outside some finite range of fre-
quencies.
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(a) Guitar note spectrogram

0 642 1284 1926 2568

−1

0

1

2

3

Frequency (Hz)

(b) Spectrum

(c) Guitar note scalogram

Fig. 4.1 Three analyses of a guitar note.
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468 JEREMY F. ALM AND JAMES S. WALKER

191 ≈ 961/5, and 104 ≈ 321/3. It may be that they are “undertones,” resulting from
body cavity resonances in the guitar.

In any case, what is needed is a technique of mathematically “zooming in” on
these lower frequencies. The “scalogram” shown in Figure 4.1(c) provides this zooming
property. As we shall explain below, the vertical scale on this scalogram consists of
multiples of a base frequency of 80 Hz, viz., 80 · 20 = 80 Hz, 80 · 21 = 160 Hz,
80 · 22 = 320 Hz, 80 · 23 = 640 Hz, and 80 · 24 = 1280 Hz. This is a logarithmic
scale of frequencies, octaves, as in the well-tempered scale. Notice that there are line
segments in this scalogram that correspond to the undertone peaks in the spectrum
for the guitar note.

We shall now describe how scalograms are computed. This is done via a method
known as the continuous wavelet transform (CWT). The CWT differs from the spec-
trogram approach in that it does not use translations of a window of fixed width.
Instead it uses translations of differently sized dilations of a window. These dilations
induce a logarithmic division of the frequency axis. Just as spectrograms are based on
a discretization of Fourier coefficients, scalograms are also based on a discretization,
a discretization of the continuous wavelet transform.

We now define the CWT. Given a function g, called the wavelet, the continuous
wavelet transform Wg[f ] of a sound signal f is defined as8

(4.1) Wg[f ](τ, s) =
1
s

∫ ∞
−∞

f(t)g
(
t− τ

s

)
dt

for scale s > 0 and time-translation τ . For the function g in the integrand of (4.1),
the variable s produces a dilation and the variable τ produces a translation.

We omit various technical details concerning the types of functions g that are
suitable as wavelets; the interested reader can consult [6] or [7]. It is shown in [6],
and in [8], that (4.1) can be derived from a simple model for the response of our
ear’s basilar membrane—which responds to frequencies on a logarithmic scale—to an
incoming sound stimulus f .

We now show how to discretize the integral in (4.1). First, we assume that the
sound signal f(t) is nonzero only over the time interval [0,Ω]. Hence (4.1) reduces to

Wg[f ](τ, s) =
1
s

∫ Ω

0
f(t)g

(
t− τ

s

)
dt.

Second, as we did for Fourier coefficients, we make a Riemann sum approximation to
this last integral using tm = m∆t, with a uniform spacing ∆t = Ω/N ; and we also
discretize the time variable τ , using τk = k∆t. This yields

(4.2) Wg[f ](k∆t, s) ≈ Ω
N

1
s

N−1∑
m=0

f(m∆t)g
(
m− k

s
∆t

)
.

The sum in (4.2) is a correlation of two discrete sequences. Given two N -point discrete
sequences {fk} and {gk}, their correlation {(f : g)k} is the sequence defined by

(4.3) (f : g)k =
N−1∑
m=0

fmgm−k .

8It is more common to use 1/
√
s in front of the integral in (4.1). The definition above causes no

essential changes in the mathematics but simplifies some subsequent formulas.
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TIME-FREQUENCY ANALYSIS OF MUSICAL INSTRUMENTS 469

(Note: In order for the sum in (4.3) to make sense, the sequence {gk} is periodically
extended via g−k := gN−k.)

Thus, (4.2) and (4.3) show that the CWT, at each scale s, is approximated by a
multiple of a discrete correlation of {fk = f(k∆t)} and {gsk = s−1g(s−1k∆t)}. These
discrete correlations are computed over a range of discrete values of s, typically

(4.4) sp = 2−p/J , p = 0, 1, 2, . . . , I · J,

where the positive integer I is called the number of octaves and the positive integer
J is called the number of voices per octave. For example, the choice of 6 octaves and
12 voices corresponds—based on the relationship between scales and frequencies that
we describe below—to the well-tempered scale used for pianos.

4.1. Gabor Wavelets. The CWTs that we use in this paper are based on Gabor
wavelets. A Gabor wavelet, with width parameter w and frequency parameter η, is
defined as follows:

(4.5) g(t) = w−1e−π(t/w)2
ei2πηt/w.

Notice that the complex exponential ei2πηt/w has a frequency of ν0 = η/w. The other
exponential w−1e−π(t/w)2

is a “bell-shaped” curve, a normal probability distribution
with mean 0 and standard deviation w/

√
2π. This bell-shaped factor in (4.5) damps

down the oscillations of g, so that their amplitude is significant only within a finite
region centered at t = 0. In fact, if we use a rule of thumb from statistics that
significant probabilities are confined to within plus or minus three standard deviations
of the mean, then significant probability will result from g only within an interval of
width 2.4w centered at 0.

To see how the CWT based on a Gabor wavelet produces a time-frequency analysis
of a sound signal, let’s consider the example of a Gabor wavelet of width w = 0.25
and frequency parameter η = 20. The complex exponential factor in (4.5) then has
a frequency of ν0 = 80. In Figure 4.2 we show the components of a CWT based
on this Gabor wavelet, and its application to a test signal. In Figure 4.2(a) we
show plots of nine different functions s−1g(s−1[t − τ ]) for scale values s = 2−p/6,
p = 8, 12, 16, and translations τ = 0.2, 0.5, 0.8. The top row shows three functions
all having the same scale value s = 2−16/6, the middle row shows three functions all
having the same scale value s = 2−12/6, and the bottom row shows three functions all
having the same scale value s = 2−8/6. These dilations and translations of this Gabor
wavelet have significant values only in small intervals centered on t = τ , with widths
of 2.4sw ≈ 0.38w, 0.60w, 0.95w for the top to bottom rows, respectively. It follows
that significant values for (4.1), (4.2), or (4.3) will only occur for values of the sound
signal that are found within these small intervals. This is how the CWT localizes its
analysis of sound signals to small portions of time.

The CWT also localizes its analysis of sound signals to small portions of frequency.
To see this, we observe that an FFT of (4.3) produces (see [1], [26], or [27])

(4.6) (f : g)k 
→ F [n]G[n].

Formula (4.6) implies that the FFT of the correlation on the right side of (4.2) consists
of FFT values for {f(tk)} multiplied by complex conjugates of FFT values for {gsk =
s−1g(s−1tk)}. In Figure 4.2(b) we show the magnitudes |Gs[n]| of the FFTs of these
sequences {gsk} for the three scale values s = 2−p/6, p = 8, 12, 16. These magnitudes

D
ow

nl
oa

de
d 

12
/1

3/
18

 to
 2

4.
34

.2
13

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



470 JEREMY F. ALM AND JAMES S. WALKER

0 0.25 0.5 0.75 1.0

0

0

0

Time (sec)

(a) Gabor wavelets

0 160 320 480 640

0

0

0

Frequency (Hz)

(b) Transform magnitudes

(c) Scalogram of a test signal

Fig. 4.2 Gabor wavelet analysis.
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lie on bell-shaped curves of finite widths centered on specific frequencies. For instance,
for s = 2−12/6 = 2−2, the bell-shaped curve in the middle of Figure 4.2 is centered
on the frequency ν = 320 Hz. This frequency of 320 Hz satisfies 320 = 80s−1.
The bell-shaped curve centered at ν = 320 Hz can be shown to have a standard
deviation of (sw)−1/

√
2π = 4w−1/

√
2π, which determines the visible width of the

significant values of the bell-shaped curve in the figure. Similarly, for s = 2−8/6 and
s = 2−16/6, there are bell-shaped curves centered on the frequencies 80s−1, which
equal 201.587 Hz and 507.968 Hz, respectively. Thus, we see that the values of s in
(4.4) induce a collection of bell-shaped curves centered on frequency values ν that
lie along a logarithmic scale of values proportional to s−1. For the particular Gabor
wavelet we have been discussing, with frequency ν0 = 80 Hz, this is a logarithmic scale
of frequencies that are multiples of ν0 = 80. These frequencies satisfy ν = ν0s

−1 =
80s−1. It follows that significant values for the discretized CWT magnitudes |(f : gs)k|
will only occur for frequencies that are found within small intervals determined by the
width of a bell-shaped curve centered on the frequency ν0s

−1. This is how the CWT
localizes its analysis of sound signals to small portions along a logarithmic scale on
the frequency axis.9

We have seen in the discussion so far that the magnitudes of a (discretized) CWT
are localized within time and frequency. These magnitudes of a CWT are called the
scalogram of the sound signal. Before we discuss scalograms for sounds from musical
instruments, it may help to first examine a scalogram of a test signal. This example
should illustrate that scalograms do provide time-frequency portraits of signals. The
test signal is

sin(2πν1t)e−π[(t−0.2)/0.1]10

+ [ sin(2πν1t) + 2 cos(2πν2t) ] e−π[(t−0.5)/0.1]10

+ [ 2 sin(2πν2t)− cos(2πν3t) ] e−π[(t−0.8)/0.1]10
,(4.7)

where ν1 = 320, ν2 = 640, and ν3 = 160. A graph of this signal over the time interval
[0, 1] appears at the top of Figure 4.2(c) with its scalogram—using the Gabor wavelet
of base frequency ν0 = 80 described above—graphed below it. As with spectrograms,
the larger magnitudes in the scalogram are graphed more darkly. The time values are
listed along the horizontal, while reciprocal scale values, s−1 = 20, 21, 22, 23, 24, are
listed along the vertical.

The test signal in (4.7) has three terms. The first term contains a sine factor,
sin(2πν1t), of frequency ν1 = 320. Its other factor, e−π[(t−0.2)/0.1]10

, limits the sig-
nificant extent of this term to a small interval centered on t = 0.2. This first term
appears most prominently on the left third of the graph at the top of Figure 4.2(c).
In the scalogram we can see a thin line segment lying directly below this left third of
the signal, and this line segment is centered on the reciprocal scale value s−1 = 22 on
the vertical axis. As we showed above, s−1 = 22 corresponds to a frequency ν = 320
Hz. Thus the scalogram has produced a time-frequency portrait of the first term in
the test signal, marking off a spectral line segment lying along the time axis in the
same position as the significant values for this first term and lying along the frequency
axis at the position of 320 Hz, which matches the frequency ν0 = 320 Hz. Similarly,
there are spectral line segments for the remaining terms in the series and they mark
off the locations, in time and frequency, of the significant values for these two terms.

9Alternative methods of time-frequency analysis, based on generalizing Gabor wavelets, have also
been investigated. See, e.g., [2], [15], and [9].

D
ow

nl
oa

de
d 

12
/1

3/
18

 to
 2

4.
34

.2
13

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



472 JEREMY F. ALM AND JAMES S. WALKER

(a) Piano note scalogram (b) Zoom on portion of (a)

Fig. 4.3 Two scalograms.

Exercise: Use Fawav [24] to produce a spectrogram of this same test signal, and
compare it with the scalogram.

For this test signal, we have seen that a Gabor wavelet scalogram provides an
excellent time-frequency portrait. We shall now examine how well Gabor scalograms
perform in analyzing the sounds from musical instruments.

4.2. Scalograms for a Guitar and Piano. We now discuss some scalogram anal-
yses of musical sounds. In Figure 4.1(c) we have shown a scalogram of a guitar note.
This scalogram, which spans four octaves using 32 voices per octave, was created us-
ing a Gabor wavelet with width parameter w = 0.25 and frequency parameter η = 20.
Therefore, the base frequency ν0, corresponding to s−1 = 20, is 80 Hz. The recip-
rocal scale values along the vertical axis in the scalogram are 20, 21, 22, 23, and 24,
which correspond to frequencies of 80, 160, 320, 640, and 1280 Hz, respectively. By
comparing the Fourier spectrum in Figure 4.1(b) with this scalogram, we can see that
the spectral line segments in the scalogram are closely matched with the peaks in the
Fourier spectrum. For instance, the two closely spaced peaks at approximately 191
and 215 Hz are clearly identified in terms of closely spaced spectral line segments in
the scalogram, directly below the most intense spectral line segment at 320 Hz.

It is clear from Figures 4.1(a) and 4.1(c) that the scalogram provides a much
more detailed time-frequency portrait of the guitar note than the spectrogram. The
scalogram represents a mathematical zooming in on the portion of the time-frequency
plane crowded together in the lower quarter of the spectrogram.

As another example of this zooming-in feature of scalograms, we show in Fig-
ure 4.3 two scalograms of a piano note. This piano note is the same as the one shown
in Figure 2.2(a), a recording of the note E4. The scalogram, which spans four oc-
taves using 64 voices per octave, shown in Figure 4.3(a), was obtained using a Gabor
wavelet having width parameter w = 0.25 and frequency parameter η = 41.25. These
parameter values were chosen so that the fundamentals and overtones of the piano
note are centered on the reciprocal scale values s−1 = 21, 22, and 23 shown in Fig-
ure 4.3(a). The base value on the reciprocal scale axis, s−1 = 20, corresponds to the
frequency ν0 = 165 Hz, hence s−1 = 21 corresponds to the fundamental ν = 330
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Hz, and s−1 = 22, 23 correspond, respectively, to the overtones ν = 660 Hz, 1320 Hz.
Comparing the scalogram in Figure 4.3(a) with the Fourier spectrum in Figure 2.2(b),
we see that the spectral line segments in the scalogram match up precisely with the
peaks in the spectrum.

Comparing the scalograms of the guitar and piano notes in Figures 4.1(c) and
4.3(a), we can see how much “cleaner” the piano scalogram is. This surely corresponds
to our auditory sense of the piano note as “purer” than the guitar note.

In Figure 4.3(b) we show how a scalogram can be used to zoom in on one spectral
line segment in the time-frequency plane. For this scalogram, only 1 octave was used,
but 256 voices were employed. The Gabor wavelet for this scalogram has a width
parameter of w = 0.125 and frequency parameter of η = 29.025. Hence the reciprocal
scale value of s−1 = 20.5 corresponds to the frequency ν0s

−1 ≈ 330 Hz. Consequently,
this scalogram provides a zooming in on the single spectral line segment at 330 Hz
for the piano note. One interesting feature of this scalogram is the evident bending of
this single spectral line segment. It is not centered on the single frequency of 330 Hz
throughout the entire recording, but is slightly higher in pitch at the beginning and
end. Whether our hearing can detect this slight variance in pitch is an interesting
question.

4.3. Separating Closely Spaced Spectral Lines. For our final illustration of
scalogram analysis, we discuss an example that has applications beyond music. In
Figure 4.4(a) we show a plot of a sum of two sinusoids, sin 2πν1x + sin 2πν2x, with
frequencies ν1 = 60 Hz and ν2 = 59.2 Hz. The graph was generated using 512 points,
equally spaced over the interval [0, 1). In Figure 4.4(b) we show the FFT spectrum for
this signal. Notice that the two frequencies ν1 and ν2 are not clearly separated in this
spectrum. In fact, there is just one peak in the spectrum, located at 59.0 Hz. There
is also a subsidiary peak at 60 Hz, which appears as a “shoulder” in the graph shown
in Figure 4.4(b). This lack of separation is reminiscent of the problem of resolving
closely spaced spectral lines in spectroscopy, an important and fundamental problem
in that field [3], [20].

The spectrogram in Figure 4.4(c) also does not reveal that there are two frequen-
cies in the signal. Figure 4.4(d), however, shows that a scalogram has resolved the
two separate frequencies. This particular scalogram spans 1 octave with 256 voices
and was created using a Gabor wavelet having a width parameter w = 1 and fre-
quency parameter η = 42.4264 ≈ 60/

√
2. For a time interval extending from about

0.4 to 0.8, we can see a pair of separate spectral curves corresponding to the two
frequencies. These bands are spread out in width and are not centered on recipro-
cal scales precisely corresponding to the frequencies of 59.2 and 60 Hz. It would be
an interesting research problem to develop a method for accurately specifying these
frequencies based on the scalogram data. One approach might be to locate the inner
edges of these spectral bands and use their location along the reciprocal scale axis
to identify separate frequencies. Edges would be defined, as in image processing, by
a sharp transition from low to high magnitudes. In a scalogram this would mark a
contrast line separating light and dark regions along the spectral bands. With this
idea in mind, we found that the inner border along the top spectral band in Fig-
ure 4.4(c) lies at s−1 ≈ 20.5, which corresponds to a frequency of ν = 60 Hz. The
inner border along the bottom spectral band lies at s−1 ≈ 20.48, which corresponds
to approximately ν = 59.2 Hz. Where there is one spectral band, at the left and right
sides of this scalogram, we instead determined the location of the central maximum
along the single band, thus obtaining a reciprocal scale value of s−1 ≈ 20.49, which
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Fig. 4.4 (a) Sum of two sinusoids, 59.2 and 60 Hz. (b) FFT Spectrum. (c) Spectrogram. (d)
Scalogram.

corresponds to a frequency of ν = 59.6 Hz. Applications of these methods to more
complicated spectra is a task for future research.

Exercise: Explain why the scalogram in Figure 4.4(d) shows a single spectral line
segment on the left and right ends of the time interval [0, 1], centered on a reciprocal
scale value that corresponds to the frequency 59.6 Hz.

4.4. Inversion of Scalograms. In certain cases it is possible to invert scalograms.
We shall not dwell on this point, since the mathematics is similar to what we described
in section 3.2 on the inversion of spectrograms.

If we let qk = (f : g)k and g̃sk = gs−k, then (q : g̃s)k has an FFT satisfying (see
[1], [26], or [27])

(4.8) (q : g̃s)k 
→ F [n]|Gs[n]|2.

Summing the FFTs in (4.8) for s = sp in the range in (4.4), and assuming that

(4.9) A ≤
I·J∑
p=0

|Gsp [n]|2 ≤ B

for some positive constants A and B, we can then divide out
∑
|Gsp [n]|2 to obtain the

FFT {F [n]} of the sequence {fk}. Hence inversion can be performed if (4.9) holds.
More details can be found in [12, Chap. IV].
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4.5. Further Connections to Music. In this section we established the connec-
tion between reciprocal scale and frequency, which yields a time-frequency interpre-
tation of scalograms. This is the correct approach when discussing Gabor wavelets.
Flandrin [10, p. 210], however, pointed out a broader interpretation:

Although this time-frequency interpretation is of current use in wavelet
analysis and scalograms, it is important to observe that it can be restric-
tive and does not always support the most pertinent point of view. In
particular, this happens when we . . . allow spectra [for the wavelet] with
several “humps.” Then they cannot simply be attached to a single fre-
quency. Rather, they must be associated with the proportions between
the frequencies. Explaining this briefly in terms of music, the wavelet
transform looks more like an analysis by chords rather than notes, and
this renders the scale more meaningful than the frequency.

An interesting, nonmathematical application of such a chordal analysis of music is
lucidly and succinctly described in [17, pp. 528–538]. Further details, demanding
more thorough musical knowledge, can be found in [11].

5. Conclusion. In this paper we have examined three different approaches to
time and frequency analysis: Fourier spectra, spectrograms, and scalograms. Fourier
spectra identify spectral peaks within entire musical signals, while spectrograms and
scalograms provide two different ways of capturing the time-frequency content of a
musical signal. Some basic applications to music were discussed, and an application
to spectroscopy was illustrated as well.
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[23] J. Ville, Théorie et applications de la notion de signal analytique, Câbles et Transmissions, 2
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