```
# ----------------------------------------------
# We can find the roots of a polynomial using NUMPY
# Suppose we have the polynomial
# x^2 + 5x + 6 =0
# We can check by hand that the roots are
# -2 and -3
# With numpy, we do
import numpy.polynomial.polynomial as poly
# This module provides a number of objects (mostly functions)
# useful for dealing with Polynomial series, including a
# Polynomial class that encapsulates the usual arithmetic operations.
# https://docs.scipy.org/doc/numpy-1.13.0/reference/
    routines.polynomials.polynomial.html
# https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/
    numpy.polynomial.polynomial.Polynomial.html
p = poly.Polynomial([6, 5, 1])
# NOTICE that the number "6" comes FIRST.
#
# To get the roots, we can write
print(p.roots())
# or
solu = poly.Polynomial.roots(p)
print(solu)
pe = poly.Polynomial([2, 3, 6, 5, 1])
# This is the polynomial x^4 + 5x^3 + 6x^2 + 3x + 2
solu = poly.Polynomial.roots(pe)
print(solu)
#
#
NONLINEAR EQUATIONS with SCIPY
#
# Nonlinear equations are harder to solve than linear equations.
# Even solving a single nonlinear equation may be challenging.
# We can use SCIPY for it
#
# Just ONE nonlinear equation
# -----------------------------
# x = - 2cos(x)
# We need to write it in the form of a function:
# f(x) = x + 2cos(x)
# and find its roots (zeros)
```

```
# f(x) = 0
import math
from scipy.optimize import fsolve
def func(x):
    return x + 2*math.cos(x)
solu = fsolve(func,0.3)
# 0.3 above is a first guess around which the root will be searched
print(solu)
```

\# SEE MORE ALTERNATIVES IN
\# https://docs.scipy.org/doc/scipy/reference/optimize.html

```
# --------------------------------
# A system of nonlinear equations
# --------------------------------
#
# x^2 + y^2 = 20 ( this is circle of radius sqrt(20) )
# y = x^2 (this is a parabola)
#
# Let us first have a look at these two equations
# in a plot
#
# Exercise
# ----------
# Make a plot of x vs y
# For the circle, use polar coordinates
# Number of points 300
# Show the legend for the two equations
# Range for the plot: -7<=x<=7, -7<=y<=7
# Now let us turn to SCIPY
# We need to deal with vectors (in the case above, a vector of dimension 2)
# We want to find the ZEROS (ROOTS) of both functions at the same time,
# function F0 = x^2 + y^2 - 20
# and
# function F1 = y - x^2
import numpy as np
from scipy.optimize import fsolve
def func(valIni):
    x=valIni[0]
    y=valIni[1]
# FF = np.empty( (2) )
    FF = np.zeros(2, float)
    FF[0] = x**2 + y**2 -20
    FF[1] = y - x**2
    return FF
```

```
valGuess = np.array([1,1])
```

solu = fsolve(func,valGuess)
print(solu)

```
# -----------------------------------------------------------------------------
#
NONLINEAR EQUATIONS: NUMERICAL METHODS
#
# But it is important to know what are the different
# existing numerical methods.
# Let us start with a simple method known as...
# ------------------
# RELAXATION METHOD
# ------------------
# We need to write the equation in the form
# x = f(x)
# Suppose we want to solve
# x = 2 - exp(-x)
# There is no analytic method to solve it, so we turn to computational
# methods. A simple method, that works in many cases, is to iterate
# the equation. It works as follows:
# 1) We guess an initial value,
# 2) Plug it on the right-side and get a new value x',
# 3) Repeat the process until the value converges to a FIXED POINT,
# that is, it stops changing.
# For the equation above, let us start with x=1
import math
x = 1.0
for n in range(20):
    x = 2 - math.exp(-x)
    print(n,x)
# We can see that }x\mathrm{ is converging to 1.8414...
```

```
#
# NOTE NOTE NOTE
# ------------------
#
# Let us consider the case
# ln(x) + x^2 - 1 = 0
# We need to write it in the form x=f(x)
# which we can do by writing
# ln(x) = 1 - x^2
# and taking the exponential of both sides
# x = exp(-x^2 +1)
#
```

```
# We can immediately see that the SOLUTION is x=1
#
# BUT,
# if we try the RELAXATION METHOD starting with x=1/2
# we see that it does NOT converge
import math
x = 0.5
for n in range(20):
        x = math.exp(1 - x**2)
        print(n,x)
```

```
#
# TRICK TRICK TRICK
# ------------------
# In cases like this, we can try to rewrite the equation,
# for example, by applying "ln" to isolate "x" from the right side
# ln(x) = 1 - x^2
# x^2 = 1 - ln(x)
# x = sqrt[ 1 - ln(x) ]
#
# Starting with this equation and x=1/2, we now see convergence
import math
x = 0.5
for n in range(20):
    x = math.sqrt(1 - math.log(x))
    print(n,x)
# We can see that x is converging to 1.
```

```
#
```


Why the Method works

Why the Method works

Taylor expansion of f(x) around the root x*

Taylor expansion of f(x) around the root x*

f(x) = f(x*) + f'(x*) (x - x*) + ...

f(x) = f(x*) + f'(x*) (x - x*) + ...

but we also have that the new estimate x' comes from

but we also have that the new estimate x' comes from

x' = f(x)

x' = f(x)

so we can approximate

so we can approximate

x' = f(x*) + f'(x*) (x - x*)

x' = f(x*) + f'(x*) (x - x*)

We also now by definition that f(x*) = x*, so

We also now by definition that f(x*) = x*, so

x' = x* + f'(x*) (x - x*)

x' = x* + f'(x*) (x - x*)

(x' - x*) = f'(x*) (x - x*)

(x' - x*) = f'(x*) (x - x*)

This means that if f'(x*)<1, at each iteration,

This means that if f'(x*)<1, at each iteration,

(x' - x*) becomes smaller than (x - x*) and so

(x' - x*) becomes smaller than (x - x*) and so

x' converges to x*

x' converges to x*

If there is no convergence, it is because f'(x*)>1.

If there is no convergence, it is because f'(x*)>1.

This can be fixed by changing from

```
# This can be fixed by changing from
```

\# $x=f(x)$ to $f^{\wedge}(-1)(x)=x$
\# Convergence is guaranteed if the derivative of
\# the inverse function $f^{\wedge}(-1)(x)$ at $x *$ is smaller than 1.
\# This will hold, because
\# Derivative[f^(-1)(x)] = 1/Derivative[f(x)]
\# How do we know this?
\# Call u = $\mathrm{f}^{\wedge}(-1)(x)$, so
\# the derivative of $\mathrm{f}^{\wedge}(-1)(x)$ is
\# du/dx
\# From above, we also have that
\# $\quad f(u)=x$, so
\# the derivative of $f(x)$ is
\# $d x / d u$ which is the reciprocal of $d u / d x$.

\#

\# PROBLEM
\# ------_------------
\# But sometimes we cannot find the inverse $\mathrm{f}^{\wedge}\{-1\}(x)$ to \# guarantee convergence. In this case,
\# we need to resort to another method to solve the
\# nonlinear equation

```
# ------------------
# ERROR ERROR ERROR
# -_-_------_---------
```

\# The error between the estimate x
\# and the next estimate x^{\prime}
\# 1) To find an expression for the error, let us start with
\# the Taylor expansion of the function $f(x)$ around the
\# correct solution $x *$
\# $f(x)=f(x *)+f^{\prime}(x=x *)(x-x *)+\ldots$
\# but we also know that the new value x^{\prime} in the iteration is
\# $x^{\prime}=f(x)$
\# so
\# $x^{\prime}=f(x *)+f^{\prime}(x=x *)(x-x *)+\ldots$
\# We also know, by definition, that $x *=f(x *)$, so up to 1st order
\# we have
\# $x^{\prime}=x *+f^{\prime}(x=x *)(x-x *)$
\# then
\# $x^{\prime}-x *=(x-x *) f^{\prime}(x *)$
\#
\# 2) Suppose that our current estimate of the solution is x and the \# next estimate, after the iteration, is x^{\prime}
\# Let us call "e" the error between $x *$ and x
\# x* = x + e
\# and e' the error between $x *$ and x^{\prime}

```
# x* = x' + e'
#
# 3) We can then rewrite
# x'-x* = (x-x*) f'(x*)
# as
# -e' = -e f'(x*) so e = e'/f'(x*)
#
# 4) Coming back to x* and using e from above,
# x* = x+e = x + e'/f'(x*)
# We also have that
# x* = x'+e'
# so
# x'+e' = x + e'/f'(x*)
# x-x' = e' (1 - 1/f'(x*))
#
# 5) From the steps above and
# making the approximation f'(x*) ~ f'(x), we find that
# the expression for the error (e') on the
# new estimate x' is
# error ~ (x - x')/[1 - 1/f'(x) ]
#
# We can then repeat the iteration until the magnitude
# of the estimated error falls below some target value
#
# For the example above
import sympy as syp
x = syp.Symbol('x')
ff = syp.sqrt(1 - syp.log(x))
gg = syp.diff(ff,x)
print(gg)
der = syp.lambdify(x,gg)
import math
x = 0.5
for n in range(20):
    xold = x
    x = math.sqrt(1 - math.log(x))
    xnew = x
    error = (xold - xnew)/(1 - 1/der(xold))
    print(n,xnew,error)
```

```
#
```


Suppose we wanted an error <10^(-6)

Suppose we wanted an error <10^(-6)

import sympy as syp
import sympy as syp
x = syp.Symbol('x')
x = syp.Symbol('x')
ff = syp.sqrt(1 - syp.log(x))
ff = syp.sqrt(1 - syp.log(x))
gg = syp.diff(ff,x)

```
gg = syp.diff(ff,x)
```

```
#print(gg)
der = syp.lambdify(x,gg)
import math
x = 0.5
accu=1.e-6
error=1.
howmany=0
while abs(error)>accu:
    xold = x
    x = math.sqrt(1 - math.log(x))
    xnew = x
    error = (xold - xnew)/(1 - 1/der(xold))
    howmany = howmany + 1
    print(howmany, xnew, error)
```


\# In the mean-field theory of ferromagnetism, the strength M of magnetization
\# of a ferromagnet material like iron depends on the temperature T according to
\# the formula
\# $\quad M=m u \tanh (J M / k T)$
\# where mu is the magnetic moment, J is a coupling constant, and k is
Boltzmann's
\# constant. To simplify a little, let us make the substitution m = M/mu and
\# C = mu J/k, so that
\# m = $\tanh (\mathrm{Cm} / \mathrm{T})$.
\# This equation always has a solution at m = 0, which implies a material that
\# is not magnetized.

```
import numpy as np
import matplotlib.pyplot as plt
# Looking at a plot of tanh
tot=300
xvalues = np.linspace(-5,5,tot)
yvalues=[]
for n in range(tot):
        yvalues.append( math.tanh(xvalues[n]) )
plt.plot(xvalues,yvalues)
plt.show()
# But are there solutions for m = tanh(Cm/T) for m != 0?
# There is no known method for solving this equation exactly,
# but we can do it numerically.
#
```

\# Let us assume that $\mathrm{C}=1$ and look for solution as a function of T accurate to \# within 10^(-6) of the true answer.
\#
\# Note: tanh and cosh are functions from "math".
\#
\# For each value of the temperature between $\mathrm{T}=0.01$ and the maximum value \# Tmax=2, start with $m=1$ and iterate the equation until the magnitude of the \# error falls below the target value 10^(-6).
\# Study 1000 values between $\mathrm{T}=0.1$ and $\mathrm{T}=2$.
\#
\# Make a plot of m vs T
\# You should see that m becomes abruptly $=0$ for $\mathrm{T}>1$.
\# At this point, we have a PHASE TRANSITION.
\# $\mathrm{T}=1$ is called the CRITICAL TEMPERATURE of the magnet.


```
#
# REGULA FALSI METHOD
# -_-_-_-_--_-_-_--_-_-
# A better way to decrease the interval around the root
# than the bisection method
#
# NEWTON'S METHOD
# ------------------
# This method converges faster to the solution than the
# relaxation method or the binary search.
```

```
#
```


EXERCISE 6.4: INVERSE HYPERBOLIC TANGENT

EXERCISE 6.4: INVERSE HYPERBOLIC TANGENT

a) Let us use Newton's method to calculate the inverse (or arc)

a) Let us use Newton's method to calculate the inverse (or arc)

hyperbolic tangent of a number u, such that

hyperbolic tangent of a number u, such that

u = tanh(x)

```
# u = tanh(x)
```

\# This is equivalent to saying that x is a root of the equation
\# $\quad \tanh (x)-u=0$
\# Start from an initial guess x=0
\# Choose as accuracy 10^(-12)
\# Remember that the derivative of $\tanh (x)$ is $1 / \cosh ^{\wedge} 2(x)$, so that \# equation for the new guess x^{\prime} is
\# $x^{\prime}=x-(\tanh (x)-u) \cosh ^{\wedge} 2(x)$
\# b) Make a plot of arctanh(u) for 100 values of u
\# between -0.99 and 0.99

```
# -------------------
# SECANT METHOD
# ------------------
```

\# -----------
\# EXERCISES
\# -----------
\# Using the Bisection Method and SCIPY, solve
\# (i) $x \operatorname{Exp}[x]=1$
\# (ii) Cos[x] = x
\# Using the Method of False Position and SCIPY, solve
\# (i) $\operatorname{Tan}[x]=1 /\left(1+x^{\wedge} 2\right) \quad 0<=x<\mathrm{Pi} / 2$
\# (ii) Cos[x] = x
\# [comparing with item (ii) above for the bisection method,
\# which method works faster for this case?]
\# Using Newton's Method and SCIPY find the real zero of:
\# (i) ArcTan[x] =1 start with $x=1$
\# (ii) Log[x] = 3 start with $x=10$

\#
\# EXERCISE
\# -----------
\# Using Newton's Method find the solutions for
\# $f(x, y)=\exp (3 x)+4 y$
\# $g(x, y)=3 y^{\wedge} 3-2 \ln (x)+7.31 x^{\wedge} 2$
\# Use as an initial guess $x o=1$ and $y o=2$
\# Stop when $|f|$ and $|g|$ are smaller than $10^{\wedge(-5) ~}$

\# To find either the local or global minima or maxima of a function, \# we differentiate it and set it equal to zero. We then just have to \# find the roots of the differentiated function.
\# If the function has many variables, we do the partial derivative of each \# and solve the set of equations.

\# An alternative method to find a minimum or maximum of a \# function of a SINGLE variable.
\# But it will not tell us whether it is a global or local \# minimum (maximum).

