We can find the roots of a polynomial using NUMPY

Suppose we have the polynomial

X"2 + 5x + 6 =0

We can check by hand that the roots are

-2 and -3

With numpy, we do

import numpy.polynomial.polynomial as poly

This module provides a number of objects (mostly functions)

useful for dealing with Polynomial series, including a

Polynomial class that encapsulates the usual arithmetic operations.

https://docs.scipy.org/doc/numpy-1.13.0/reference/
routines.polynomials.polynomial.html

https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/
numpy.polynomial.polynomial.Polynomial.html

p = poly.Polynomial([é6, 5, 11)

NOTICE that the number "6" comes FIRST.

#

To get the roots, we can write

print(p.roots())

or

solu = poly.Polynomial.roots(p)

print(solu)

pe = poly.Polynomial([2, 3, 6, 5, 11)

This is the polynomial x"4 + 5x"3 + 6x"2 + 3x + 2
solu = poly.Polynomial.roots(pe)

print(solu)

Nonlinear equations are harder to solve than linear equations.
Even solving a single nonlinear equation may be challenging.
We can use SCIPY for it

H R
«
c
n
—+
(@)
=
m
>
o
>
=
.
>
()
Q
H
()
o]
e
Q
—~+
[N
o
=)

X = — 2cos(x)

We need to write it in the form of a function:
f(x) = x + 2cos(x)

and find its roots (zeros)

H H H R

f(x) =0
import math
from scipy.optimize import fsolve
def func(x):
return x + 2*xmath.cos(x)
solu = fsolve(func,0.3)
0.3 above is a first guess around which the root will be searched
print(solu)

SEE MORE ALTERNATIVES 1IN
https://docs.scipy.org/doc/scipy/reference/optimize.html

A system of nonlinear equations

#

x"2 + y*2 =20 (this is circle of radius sqrt(20))
y = x"2 (this is a parabola)

#

Let us first have a look at these two equations

in a plot

Exercise

Make a plot of x vs vy

For the circle, use polar coordinates

Number of points 300

Show the legend for the two equations

Range for the plot: -7<=x<=7, -7<=y<=7

Now let us turn to SCIPY

We need to deal with vectors (in the case above, a vector of dimension 2)
We want to find the ZEROS (ROOTS) of both functions at the same time,
function FO = x"2 + y"2 - 20

and

function F1 =y - x"2
import numpy as np
from scipy.optimize import fsolve

def func(vallni):
x=valInil[@]
y=valInil[1]

FF = np.empty((2))
FF = np.zeros(2, float)
FFLO] = x*x*2 + y**x2 —-20
FFL1] = y — x*%2
return FF

valGuess = np.array([1,1])
solu = fsolve(func,valGuess)
print(solu)

But it is important to know what are the different
existing numerical methods.
Let us start with a simple method known as...

We need to write the equation in the form
x = f(x)

H+

Suppose we want to solve

x = 2 — exp(-x)
There is no analytic method to solve it, so we turn to computational
methods. A simple method, that works in many cases, is to iterate
the equation. It works as follows:
1) We guess an initial value,
2) Plug it on the right-side and get a new value x',
3) Repeat the process until the value converges to a FIXED POINT,
that is, it stops changing.

HoH H O H H H KR

For the equation above, let us start with x=1
import math
Xx = 1.0
for n in range(20):
X = 2 — math.exp(-x)
print(n, x)
We can see that x is converging to 1.8414...

E=S
=
o
|
m
=
o
3
m
=
o
|
m

Let us consider the case
In(x) + x*2 -1 =20
We need to write it in the form x=f(x)
which we can do by writing
In(x) =1 - x"2
and taking the exponential of both sides
x = exp(-x"2 +1)

HoH oH O OH H HH R H

We can immediately see that the SOLUTION is x=1

if we try the RELAXATION METHOD starting with x=1/2
we see that it does NOT converge
import math
X = 0.5
for n in range(20):
X = math.exp(1 — x*%2)
print(n,x)

#
#
BUT,
#
#

TRICK TRICK TRICK

In cases like this, we can try to rewrite the equation,

for example, by applying "1n" to isolate "x" from the right side
1In(x) =1 - x"2

x"2 =1 - 1n(x)

x = sqrtl 1 - In(x) 1

#

Starting with this equation and x=1/2, we now see convergence

import math

X = 0.5

for n in range(20):
x = math.sqrt(1 - math.log(x))
print(n, x)

We can see that x is converging to 1.

*H B
=
>
<
+
>
@
<
@
+
>
o
o
=
o
H
=~
»

Taylor expansion of f(x) around the root x*
f(x) = flxx) + f'(xx) (x = x*k) + ...

but we also have that the new estimate x' comes from
x' = f(x)

SO we can approximate

x' = f(xx) + f'(xx) (x — xx)

We also now by definition that f(xx) = x*, so
x' = xx + f'(xx) (x — xx)

(x'" = xx) = f'(x*x) (x — xx*)

This means that if f'(xx)<1, at each iteration,
(x' — x*) becomes smaller than (x — x*) and so
x' converges to xx

HoH oH H OH H O OH HHH R HE

If there is no convergence, it is because f'(xx)>1.
This can be fixed by changing from

H H

FHoH H O H H O H H HH K H

H oH R

HOoH H K

H

HoH oH O H H H OH HHHHHHHHHRHF

x = f(x) to fA(-1)(x) = x
Convergence is guaranteed if the derivative of
the inverse function f7A(-1)(x) at x* is smaller than 1.
This will hold, because
Derivative[f~(-1)(x)] = 1/Derivativel[f(x)]
How do we know this?
Call u = fA(-1)(x), so
the derivative of fA(-1)(x) is
du/dx
From above, we also have that
f(u) = x, so
the derivative of f(x) is
dx/du which is the reciprocal of du/dx.

But sometimes we cannot find the inverse fA{-1}(x) to
guarantee convergence. In this case,

we need to resort to another method to solve the
nonlinear equation

The error between the estimate x
and the next estimate x'

1) To find an expression for the error, let us start with
the Taylor expansion of the function f(x) around the
correct solution xx

f(x) = f(xk) + f'(x=xk) (x=x*) + ..

but we also know that the new value x' in the iteration is

x'" = f(x)
so
X' = f(x*x) + f'(x=x*) (x=x*) + ...

We also know, by definition, that x*x = f(x%), so up to 1st order
we have

X' = xk + f'(x=x*) (x—x%)

then

X'=x*x = (x=x%) f'(xx*)

2) Suppose that our current estimate of the solution is x and the
next estimate, after the iteration, is x'

Let us call "e" the error between x* and x

Xk = X + e

and e' the error between x* and x'

Xk = x' + e'

3) We can then rewrite

X'=x% = (x=x*) f'(xx*)

as

-e' = -e f'(xkx) so e =e'/f'(xx*)

4) Coming back to x*x and using e from above,
Xk = x+e = x + e'/f'(xx)
We also have that

Xk = x'+e'
Yo)
x'+e' = x + e'/f'(xx)

x-x' =e' (1 - 1/f"'(xx))

5) From the steps above and
making the approximation f'(xx) ~ f'(x), we find that
the expression for the error (e') on the
new estimate x' is
error ~ (x — x')/[1 - 1/Ff'(x) 1

We can then repeat the iteration until the magnitude
of the estimated error falls below some target value

HoH H o H OH OH HHHHHHHHHHHH R KK HHH

For the example above

import sympy as syp

X = syp.Symbol('x")

ff = syp.sqrt(1 - syp.log(x))
gg = syp.diff(ff,x)

print(gg)

der = syp.lambdify(x,gg)

import math

X = 0.5

for n in range(20):
xold = x
x = math.sqrt(1 - math.log(x))
Xnew = X

error = (xold - xnew)/(1 - 1/der(xold))
print(n, xnew,error)

import sympy as syp
X = syp.Symbol('x")
ff = syp.sqrt(1 - syp.log(x))
gg = syp.diff(ff,x)

#print(gg)
der = syp.lambdify(x,gg)

import math

X = 0.5

accu=l.e-6

error=1.

howmany=0

while abs(error)>accu:
xold = x
x = math.sqrt(1 - math.log(x))
Xxnew = X

error = (xold - xnew)/(1 - 1/der(xold))
howmany = howmany + 1
print(howmany, xnew,error)

EXERCISE 6.3: FERROMAGNETISM

T+

In the mean-field theory of ferromagnetism, the strength M of magnetization
of a ferromagnet material like iron depends on the temperature T according to
the formula
M = mu tanh(JIM/kT)

where mu is the magnetic moment, J is a coupling constant, and k is
Boltzmann's
constant. To simplify a little, let us make the substitution m = M/mu and
C = mu J/k, so that
m = tanh(Cm/T).

H OH H H R

This equation always has a solution at m = @, which implies a material that
is not magnetized.

import numpy as np
import matplotlib.pyplot as plt
Looking at a plot of tanh
tot=300
xvalues = np.linspace(-5,5,tot)
yvalues=[]
for n in range(tot):
yvalues.append(math.tanh(xvalues[nl))
plt.plot(xvalues,yvalues)
plt.show()

But are there solutions for m = tanh(Cm/T) for m != 0?

There is no known method for solving this equation exactly,
but we can do it numerically.

#

HoH H W H H O HHHHH KR

+=

H oH B

Let us assume that C=1 and look for solution as a function of T accurate to
within 107(-6) of the true answer.

Note: tanh and cosh are functions from "math".

For each value of the temperature between T=0.01 and the maximum value
Tmax=2, start with m=1 and iterate the equation until the magnitude of the
error falls below the target value 107(-6).

Study 1000 values between T=0.1 and T=2.

Make a plot of m vs T

You should see that m becomes abruptly = 0 for T>1.
At this point, we have a PHASE TRANSITION.

T=1 is called the CRITICAL TEMPERATURE of the magnet.

See PDF notes and/or the chapter 6 of the book for
the methods below

A better way to decrease the interval around the root
than the bisection method

This method converges faster to the solution than the
relaxation method or the binary search.

EXERCISE 6.4: INVERSE HYPERBOLIC TANGENT
a) Let us use Newton's method to calculate the inverse (or arc)
hyperbolic tangent of a number u, such that

u = tanh(x)

This is equivalent to saying that x is a root of the equation
tanh(x) — u =0

Start from an initial guess x=0
Choose as accuracy 10°(-12)

Remember that the derivative of tanh(x) is 1/cosh”2(x), so that
equation for the new guess x' is

x'" = x — (tanh(x) = u) cosh”2(x)

b) Make a plot of arctanh(u) for 100 values of u
between -0.99 and 0.99

Using the Bisection Method and SCIPY, solve

H

HoH HH R

H oH R

(1) x Explx] =1
(ii) Cos[x] = x

Using the Method of False Position and SCIPY, solve

(1) Tan[x] = 1/(1+x"2) 0 <= x < Pi/2

(ii) Cos[x] = x

[comparing with item (ii) above for the bisection method,
which method works faster for this case?]

Using Newton's Method and SCIPY find the real zero of:

(1) ArcTanl[x] =1 start with x=1
(ii) Loglx] =3 start with x=10

HoH HH R

HOoH B H R H

H oH R

HOoH H K

Using Newton's Method find the solutions for
f(x,y) = exp(3x)+4y

g(x,y) = 3y?"3 - 2 In(x) + 7.31 x"2

Use as an initial guess xo=1 and yo=2

Stop when |f| and |g| are smaller than 10"(-5)

To find either the local or global minima or maxima of a function,

we differentiate it and set it equal to zero. We then just have to

find the roots of the differentiated function.

If the function has many variables, we do the partial derivative of each
and solve the set of equations.

An alternative method to find a minimum or maximum of a
function of a SINGLE variable.

But it will not tell us whether it is a global or local
minimum (maximum).

