For a symmetic matrix A, an eigenvector v is a vector that satisfies

$$
A \cdot v=\lambda_{\hat{\imath}} v
$$

the corresponding eigenvalue
For an $N \times N$ matrix throne are N eigenvectors $v_{1}, v_{2}, v_{3}, \ldots v_{N}$ with coruponding eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \lambda_{N}$

The eigenvectors are orthogonal

$$
v_{i} \cdot v_{j}=0 \quad \text { if } i \neq j
$$

and they are normalized
$v_{i} \cdot v_{i}=1$ (this is just convention)

If we consider the matrix V, when each whim is an eigenvector v, we can write all N equations

$$
A v_{i}=\lambda_{i} v_{i}
$$

into a single equation

$$
A \cdot V=V \cdot D
$$

whorl D is a diagonal matrix with the eigenvalue λ_{i}.

Because the eigenvectors are orthogonal, the matrix V is orthogonal

$$
V^{\top} V=V V^{\top}=\mathbb{1}
$$

QR ALGORITHM is a popular techique to diagonalize

$$
\left(\begin{array}{ll}
\text { diagonalize }= \\
\text { find eigenvalues } \\
\text { and eigenvectors }
\end{array}\right) \quad \begin{aligned}
& \text { to diagonalize symmetic and } \\
& \text { Hermitian mahicus }
\end{aligned}
$$

The algorithm uses the QR decomposition of the matrix. We will details about the decomposition next. For now we just ned to know that this is a way to breale the matrix A into the product

orthogonal matrix uppor-triangular matrix
\Rightarrow Lit us start by writing

$$
A=Q_{1} \cdot R_{1}
$$

\Rightarrow multiply by Q_{\perp}^{\top}

$$
Q_{1}^{\top} A=\underbrace{Q_{1}^{\top} Q_{1} R_{1}}_{M}=R_{1}
$$

\Rightarrow Define a $\overline{\overline{\text { new }}}$ matrix

$$
\begin{aligned}
& A_{1}=\underbrace{R_{1}}_{\text {from above }} Q_{1}=Q_{1}=Q_{1}^{\top} A \\
& A_{1}=Q_{1}^{\top} A Q_{1}
\end{aligned}
$$

\Rightarrow Repeat the process

$$
A_{1}=Q_{2} \cdot R_{2}
$$

$$
\underbrace{Q_{2}^{T} A_{1}}=R_{2}
$$

new matrix

$$
\begin{aligned}
& A_{2}=R_{2}^{\downarrow} \cdot Q_{2} \\
& A_{2}=Q_{2}^{\top} A_{1} Q_{2}
\end{aligned}
$$

so

$$
A_{2}=\theta_{2}^{\top} Q_{1}^{\top} A \theta_{1} \theta_{2}
$$

\Rightarrow Repeating the procus many times

$$
\begin{gathered}
A_{1}=Q_{1}^{T} A Q_{1} \\
A_{2}=Q_{2}^{T} Q_{1}^{T} A Q_{1} Q_{2} \\
A_{3}=Q_{3}^{T} Q_{2}^{T} Q_{1}^{T} A Q_{1} Q_{2} Q_{3} \\
\ldots \\
A_{k}=\left(Q_{k}^{T} \ldots Q_{1}^{\top}\right) A\left(Q_{1} \ldots Q_{k}\right)
\end{gathered}
$$

\Rightarrow It can be proven that if we continue this prows long enough, the mothix $\left(A_{k}\right)$ will eventually become diagonal. The off-diagonal elements become smaller and smaller the moue iterations we do.

In practice, A_{k} is approximately a diagonal matrix D
\Rightarrow Let us define

$$
V=Q_{1} \cdot \theta_{2}, \theta_{3} \ldots Q_{k}
$$

From above

$$
V^{\top} A V=D
$$

multiplying by V

$$
A V=V D
$$

which is exactly the original equation we had to solve.

Therefore
-) The diagonal elements of

$$
A_{k}=\left(\begin{array}{ll}
\theta_{k}^{\top} & \ldots \\
\theta_{1}^{\top}
\end{array}\right) A\left(\theta_{1} \ldots \theta_{k}\right)
$$

are the eigenvalues
-) Each column of

$$
V=\theta_{1} \cdot \oplus_{2} \cdot \theta_{3} \ldots Q_{k}
$$

is an eigenvector

RECIPE

1) Create an $N \times N$ identity matrix V.

Choose the target accuracy \in for the off-diagonal elements of the eigenvalue matrix
2) Calculate the $Q R$ decomposition
$A=Q R$ (sue below how to do it)
3) Update A to the new value

$$
A=R \cdot Q
$$

4) Multiply V on the right by Q

$$
V=V \cdot Q
$$

5) Check the off-diagonal elements of the new A. If they are less than E_{1} we are done. Otherwise go back to step 2.

QR decomposition
\Rightarrow Let us think of A as a set of N column victors $a_{0}, a_{1}, \ldots a_{N-1}$
using Python numbering
\Rightarrow Let us define two sots of vectors $\mu_{0}, \mu_{1}, \ldots \mu_{N-1}$ and $q_{0}, q_{1} \ldots q_{N-1}$

$$
\left\{\begin{array}{l}
\mu_{0}=a_{0} \\
\mu_{1}=a_{1}-\left(q_{0} \cdot a_{1}\right) q_{0} \\
\mu_{2}=a_{2}-\left(q_{0} \cdot a_{2}\right) q_{0}-\left(q_{1} \cdot a_{2}\right) q_{1}\left\{\begin{array}{l}
q_{0}=\frac{\mu_{0}}{\left|\mu_{0}\right|} \\
q_{1}=\frac{\mu_{1}}{\left|\mu_{1}\right|} \\
q_{2}=\frac{\mu_{2}}{\left|\mu_{2}\right|}
\end{array}, \$\right. \text { }
\end{array}\right.
$$

General formulas

$$
\begin{aligned}
& \mu_{i}=a_{i}-\sum_{j=0}^{i-1}\left(q_{j} \cdot a_{i}\right) q_{j} \\
& q_{i}=\frac{\mu_{i}}{\left|\mu_{i}\right|}
\end{aligned}
$$

\Rightarrow It can be shown that the vectors q_{i} are ORTHONORMAL

$$
\int 1 \text { if } t \neq i
$$

$$
q_{i} \cdot q_{j}= \begin{cases}1 & \text { if } i \neq j \\ 0 & \text { if } i=j\end{cases}
$$

\Rightarrow Rearranging the definitions

$$
\left\{\begin{array}{l}
a_{0}=\left|\mu_{0}\right| q_{0} \\
a_{1}=\left|\mu_{1}\right| q_{1}+\left(q_{0} \cdot a_{1}\right) q_{0} \\
a_{2}=\left|\mu_{2}\right| q_{2}+\left(q_{0} \cdot a_{2}\right) q_{0}+\left(q_{1} \cdot a_{2}\right) q_{1} \\
\cdots
\end{array}\right.
$$

\Rightarrow This can be written in a matrix form

$$
A=\left(\begin{array}{lll}
1 & 1 & \mid \\
a_{0} & a_{1} & a_{2} \\
1 & 1 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
1 & 1 & 1 \\
q_{0} & q_{1} & q_{2} \\
1 & 1 & \mid
\end{array}\right)}_{Q} \underbrace{\left(\begin{array}{ccc}
\left|\mu_{0}\right| & q_{0} \cdot a_{2} & q_{0}, a_{2} \\
0 & \left|\mu_{2}\right| & q_{1}, a_{2} \\
0 & 0 & \left|\mu_{2}\right|
\end{array}\right)}_{R}
$$

orthogonal matrix upper triangular matrix
This is the $Q R$ decomposition.
(1) Starting with a curtain matrix A, we use the v 's and q 's
above to write $A_{\text {oed }}=Q R$
(2) update

$$
A_{\text {new }}=R Q
$$

.) If the precess is repeated, use Anew above and its corruponding new v 's and q 's to get new Q and R and restart the steps (1) and (2)

