
Lecture #3: PageRank Algorithm - The Mathematics
of Google SearchWe live in a computer era. Internet is part of our everyday lives and information is only a click

away. Just open your favorite search engine, like Google, AltaVista, Yahoo, type in the key words,
and the search engine will display the pages relevant for your search. But how does a search engine
really work?

At first glance, it seems reasonable to imagine that what a search engine does is to keep an index
of all web pages, and when a user types in a query search, the engine browses through its index and
counts the occurrences of the key words in each web file. The winners are the pages with the
highest number of occurrences of the key words. These get displayed back to the user.

This used to be the correct picture in the early 90s, when the first search engines used text based
ranking systems to decide which pages are most relevant to a given query. There where however a
number of problems with this approach. A search about a common term such as "Internet" was
problematic. The first page displayed by one of the early search engines was written in Chinese,
with repeated occurrences of the word "Internet" and containing no other information about the
Internet. Moreover, suppose we wanted to find some information about Cornell. We type in the word
"Cornell" and expect that "www.cornell.edu" would be the most relevant site to our query. However
there may be millions of pages on the web using the world Cornell, and www.cornell.edu may not
be the one that uses it most often. Suppose we decided to write a web site that contains the word
"Cornell" a billion times and nothing else. Would it then make sense for our web site to be the first
one displayed by a search engine? The answer is obviously no. However, if all a search engine does
is to count occurrences of the words given in the query, this is exactly what might happen.

The usefulness of a search engine depends on the relevance of the result set it gives back. There
may of course be millions of web pages that include a particular word or phrase; however some of
them will be more relevant, popular, or authoritative than others. A user does not have the ability or
patience to scan through all pages that contain the given query words. One expects the relevant
pages to be displayed within the top 20-30 pages returned by the search engine.

Modern search engines employ methods of ranking the results to provide the "best" results first
that are more elaborate than just plain text ranking. One of the most known and influential
algorithms for computing the relevance of web pages is the Page Rank algorithm used by the
Google search engine. It was invented by Larry Page and Sergey Brin while they were graduate
students at Stanford, and it became a Google trademark in 1998. The idea that Page Rank brought
up was that, the importance of any web page can be judged by looking at the pages that link to it. If
we create a web page i and include a hyperlink to the web page j, this means that we consider j
important and relevant for our topic. If there are a lot of pages that link to j, this means that the
common belief is that page j is important. If on the other hand, j has only one backlink, but that
comes from an authoritative site k, (like www.google.com, www.cnn.com, www.cornell.edu) we say
that k transfers its authority to j; in other words, k asserts that j is important. Whether we talk about
popularity or authority, we can iteratively assign a rank to each web page, based on the ranks of the
pages that point to it.

To this aim, we begin by picturing the Web net as a directed graph, with nodes represented by
web pages and edges represented by the links between them.

Suppose for instance, that we have a small Internet consisting of just 4 web sites
www.page1.com, www.page2.com, www.page3.com, www.page4.com, referencing each other in the
manner suggested by the picture:

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

1 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

We "translate" the picture into a directed graph with 4 nodes, one for each web site. When web
site i references j, we add a directed edge between node i and node j in the graph. For the purpose
of computing their page rank, we ignore any navigational links such as back, next buttons, as we
only care about the connections between different web sites. For instance, Page1 links to all of the
other pages, so node 1 in the graph will have outgoing edges to all of the other nodes. Page3 has
only one link, to Page 1, therefore node 3 will have one outgoing edge to node 1. After analyzing
each web page, we get the following graph:

In our model, each page should transfer evenly its importance to the pages that it links to. Node 1

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

2 of 9 11/8/18, 10:54 PM

has 3 outgoing edges, so it will pass on of its importance to each of the other 3 nodes. Node 3

has only one outgoing edge, so it will pass on all of its importance to node 1. In general, if a node

has k outgoing edges, it will pass on of its importance to each of the nodes that it links to. Let

us better visualize the process by assigning weights to each edge.

Let us denote by A the transition matrix of the graph, A = .

Dynamical systems point of view:

Suppose that initially the importance is uniformly distributed among the 4 nodes, each getting
¼. Denote by v the initial rank vector, having all entries equal to ¼. Each incoming link increases
the importance of a web page, so at step 1, we update the rank of each page by adding to the
current value the importance of the incoming links. This is the same as multiplying the matrix A
with v . At step 1, the new importance vector is v1 = Av. We can iterate the process, thus at step
2, the updated importance vector is v2 = A(Av) = A2v. Numeric computations give:

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

3 of 9 11/8/18, 10:54 PM

We notice that the sequences of iterates v, Av, ..., Akv tends to the equilibrium value v* =

. We call this the PageRank vector of our web graph.

Linear algebra point of view:

Let us denote by x1, x2, x3, and x4 the importance of the four pages. Analyzing the situation at
each node we get the system:

This is equivalent to asking for the solutions of the equations . From

Example 6 in Lecture 1 we know that the eigenvectors corresponding to the eigenvalue 1 are of

the form . Since PageRank should reflect only the relative importance of the nodes,

and since the eigenvectors are just scalar multiples of each other, we can choose any of them to
be our PageRank vector. Choose v* to be the unique eigenvector with the sum of all entries equal
to 1. (We will sometimes refer to it as the probabilistic eigenvector corresponding to the

eigenvalue 1). The eigenvector is our PageRank vector.

Probabilistic point of view:

Since the importance of a web page is measured by its popularity (how many incoming links it
has), we can view the importance of page i as the probability that a random surfer on the Internet
that opens a browser to any page and starts following hyperlinks, visits the page i. We can
interpret the weights we assigned to the edges of the graph in a probabilistic way: A random
surfer that is currently viewing web page 2, has ½ probability to go to page 3, and ½ probability
to go to page 4. We can model the process as a random walk on graphs. Each page has equal
probability ¼ to be chosen as a starting point. So, the initial probability distribution is given by

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

4 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

the column vector [¼ ¼ ¼ ¼]t. The probability that page i will be visited after one step is equal
to Ax, and so on. The probability that page i will be visited after k steps is equal to Akx. The
sequence Ax, A2x, A3x, ..., Akx, ... converges in this case to a unique probabilistic vector v*. In
this context v* is called the stationary distribution and it will be our Page Rank vector. Moreover,
the ith entry in the vector v* is simply the probability that at each moment a random surfer visits
page i. The computations are identical to the ones we did in the dynamical systems interpretation,
only the meaning we attribute to each step being slightly different.

The Page Rank vector v* we have computed by different methods, indicates that page 1 is the
most relevant page. This might seem surprising since page 1 has 2 backlinks, while page 3 has 3
backlinks. If we take a look at the graph, we see that node 3 has only one outgoing edge to node 1,
so it transfers all its importance to node 1. Equivalently, once a web surfer that only follows
hyperlinks visits page 3, he can only go to page 1. Notice also how the rank of each page is not
trivially just the weighted sum of the edges that enter the node. Intuitively, at step 1, one node
receives an importance vote from its direct neighbors, at step 2 from the neighbors of its neighbors,
and so on.

Changing the web graph might lead to certain problems.

Nodes with no outgoing edges (dangling nodes)

We iteratively compute the rank of the 3 pages:

.

So in this case the rank of every page is 0. This is counterintuitive, as page 3 has 2 incoming
links, so it must have some importance!

An easy fix for this problem would be to replace the column corresponding to the dangling node
3 with a column vector with all entries 1/3. In this way, the importance of node 3 would be equally
redistributed among the other nodes of the graph, instead of being lost.

Disconnected components

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

5 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

A random surfer that starts in the first connected component has no way of getting to web page
5 since the nodes 1 and 2 have no links to node 5 that he can follow. Linear algebra fails to help

as well. The transition matrix for this graph is . Notice that

 are both eigenvectors corresponding to the eigenvalue 1, and they

are not just trivially one the a scalar multiple of the other. So, both in theory and in practice, the
notation of ranking pages from the first connected component relative to the ones from the second
connected component is ambiguous.

The web is very heterogeneous by its nature, and certainly huge, so we do not expect its graph to
be connected. Likewise, there will be pages that are plain descriptive and contain no outgoing links.
What is to be done in this case? We need a non ambiguous meaning of the rank of a page, for any
directed Web graph with n nodes.

The solution of Page and Brin:

In order to overcome these problems, fix a positive constant p between 0 and 1, which we call
the damping factor (a typical value for p is 0.15). Define the Page Rank matrix (also known as

the Google matrix) of the graph by where

.

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

6 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

Problem 1. Prove that M remains a column stochastic matrix. Prove that M has only positive entries.

The matrix M models the random surfer model as follows: most of the time, a surfer will follow
links from a page: from a page i the surfer will follow the outgoing links and move on to one of the
neighbors of i. A smaller, but positive percentage of the time, the surfer will dump the current page
and choose arbitrarily a different page from the web and "teleport" there. The damping factor p
reflects the probability that the surfer quits the current page and "teleports" to a new one. Since

he/she can teleport to any web page, each page has probability to be chosen. This justifies the

structure of the matrix B.

Problem 2. Redo the computations for the Page Rank with the transition matrix A replaced with the
matrix M, for the graphs representing the Dangling nodes, respectively Disconnected components.
Do the problems mentioned in there still occur?

Intuitively, the matrix M "connects" the graph and gets rid of the dangling nodes. A node with no

outgoing edges has now probability to move to any other node. Rigorously, for the matrix M,

the following theorems apply:

Perron-Frobenius Theorem: If M is a positive, column stochastic matrix, then:

1 is an eigenvalue of multiplicity one.1.
1 is the largest eigenvalue: all the other eigenvalues have absolute value smaller than 1.2.
the eigenvectors corresponding to the eigenvalue 1 have either only positive entries or only
negative entries. In particular, for the eigenvalue 1 there exists a unique eigenvector with the
sum of its entries equal to 1.

3.

Power Method Convergence Theorem: Let M be a positive, column stochastic n × n matrix.
Denote by v* its probabilistic eigenvector corresponding to the eigenvalue 1. Let z be the column

vector with all entries equal to . Then the sequence z, Mz, ..., Mkz converges to the vector v*.

In view of everything discussed above, we conclude that:

Fact: The PageRank vector for a web graph with transition matrix A, and damping factor p, is the
unique probabilistic eigenvector of the matrix M, corresponding to the eigenvalue 1.

From the mathematical point of view, once we have M, computing the eigenvectors corresponding
to the eigenvalue 1 is, at least in theory, a straightforward task. As in Lecture 1, just solve the
system Ax = x! But when the matrix M has size 30 billion (as it does for the real Web graph), even
mathematical software such as Matlab or Mathematica are clearly overwhelmed.

An alternative way of computing the probabilistic eigenvector corresponding to the eigenvalue 1
is given by the Power Method. The theorem guarantees that the method works for positive, column
stochastic matrices. We reasoned that the iteration process corresponds to the way importance
distributes over the net following the link structure (Recall the random surfer model).
Computationally speaking, it is much more easier, starting from the vector with all entries 1, to
multiply x, Mx,..., Mnx until convergence then it is to compute the eigenvectors of M. In fact, in this

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

7 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

case, one needs only compute the first couple of iterates in order to get a good approximation of the
PageRank vector. For a random matrix, the power method is in general known to be slow to
converge. What makes it work fast in this case however is the fact that the web graph is sparse.
This means that a node i has a small number of outgoing links (a couple of hundred at best, which
is extremely small corresponding to the 30 billion nodes it could theoretically link to). Hence the
transition matrix A has a lot of entries equal to 0.

We end the lecture by proposing the following problems:

Problem 3. Compute the PageRank vector of the following graph, considering the damping constant
p to be successively p = 0, p = 0.15, p = 0.5, and respectively p = 1.

Problem 4. Compute the PageRank vector of the directed tree depicted below, considering that the
damping constant p = 0.15. Interpret your results in terms of the relationship between the number of
incoming links that each node has and its rank.

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

8 of 9 11/8/18, 10:54 PM

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

leasantos
Highlight

 Back Table of Contents Next

PageRank Algorithm - The Mathematics of Google Search http://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/...

9 of 9 11/8/18, 10:54 PM

