Suppose we want to solve the following 4 simultaneous equations for the variables $x, y, z, w$

$$
\left\{\begin{array}{l}
2 w+x+4 y+z=-4 \\
3 w+4 x-y-z=3 \\
w-4 x+y+5 z=9 \\
2 w-2 x+y+3 z=7
\end{array}\right.
$$

This can be written in matrix form

$$
A x=v
$$

who

$$
A=\left(\begin{array}{rrrr}
2 & 1 & 4 & 1 \\
3 & 4 & -1 & -1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{array}\right) \quad x=\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right) \quad v=\left(\begin{array}{c}
-4 \\
3 \\
9 \\
7
\end{array}\right)
$$

$\Rightarrow$ Gaussian elimination
(.) we can multiply any equation by a constant
-) we can take any linear combination
of 2 equations of 2 equations
(1) Divide the 1 st row ( $A$ and $v$ ) by the top -lift element of $A$.

Howe it is (2), so
$\frac{2}{2} \quad \frac{1}{2} \quad \frac{4}{2} \quad \frac{1}{2}$ and $\frac{-4}{2}$
gives
gives became 1
$\left(\begin{array}{rrrr}1 & \underline{0.5} & 2 & 0.5 \\ 3 & 4 & -1 & -1 \\ 1 & -4 & 1 & 5 \\ 2 & -2 & 1 & 3\end{array}\right)\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 \\ 3 \\ 9 \\ 7\end{array}\right)$
(2) Substitute the 2 nd row with
ind row - (3)* (Hst row)
$\uparrow$ first element in the
that is, and row
$\left(\begin{array}{llll}3 & 4 & -1 & -1\end{array}\right)-3\left(\begin{array}{llll}1 & 0.5 & 2 & 0.5\end{array}\right)$ and $3-3(-2)$
$\left(\begin{array}{llll}0 & 2.5 & -7 & -2.5\end{array}\right)$
and
9
which gives

$$
\begin{aligned}
& \text { ch gives } \text { bicarb azov }_{\text {gan }} \\
& \left(\begin{array}{cccc}
1 & 0.5 & 2 & 0.5 \\
\left(\begin{array}{c}
0 \\
1
\end{array}\right. & 2.5 & -7 & -2.5 \\
1 & -4 & 1 & 5 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
9 \\
9 \\
7
\end{array}\right)
\end{aligned}
$$

(3) Do the same trick between the 3rd and first row,
so that the first element of the third row becomes zero.

Do the same tick between the 4 th and dst row, so that the first element of the fount row becomes zero
\(\left($$
\begin{array}{cccc}(1) & 0.5 & 2 & 0.5 \\
(0) & 2.5 & -7 & -2.5 \\
(0) & -4.5 & 1 & 4.5 \\
(0) & -3 & -3 & 2\end{array}
$$\right)\left($$
\begin{array}{l}w \\
x \\
y \\
z\end{array}
$$\right)=\left(\begin{array}{c}-2 \\
9 \\
11 \\

11\end{array}\right) \quad\)| which mans |
| :---: |
| $k=\frac{1}{2}$ |
| 3 (om buber Not t) |

Python wot: $n=0$

$$
\begin{aligned}
& \operatorname{div}=A[n, n] \\
& A[n, n]=\Delta[n, n] / \operatorname{div}
\end{aligned}
$$

for $k$ in range ( $n+1$, Not)

$$
\begin{aligned}
& \text { malt }=A[n, k] \\
& A[k,:]=A[k,:]-\text { mull } \not \approx A[n,:]
\end{aligned}
$$

(4) Now we move to the ind row and perform a similar sequence of operations, so that we will get

$$
\left(\begin{array}{lll}
1 & 0.5 & \\
0 & 1 & \cdots \\
0 & 0 & \\
0 & 0 &
\end{array}\right.
$$

Python code:
same as about but for $n=1$ \}

The steps are :-) divide the and row by its and element (here it is 2.5)
.) Ord row - $(-4.5)$ n(2nd row)
.) 4 th row - $(-3)$ (ind row)
$\left(\begin{array}{llll}1 & 0.5 & 2 & 0.5\end{array}\right)(w) \quad(-2)$

$$
\left(\begin{array}{cccc}
1 & 0.5 & 2 & 0.5 \\
0 & (1) & -2.8 & -1 \\
0 & 0 & -13.6 & 0 \\
0 & 0 & -11.4 & -1
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
3.6 \\
27.2 \\
21.8
\end{array}\right)
$$

(5) Move to the 3rd row and do the same
b) divide by ( -13.6 )
.) 4 th row - $(-11.4)$ (3rd row)


$$
\left(\begin{array}{rrrr}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
3.6 \\
-2 \\
-1
\end{array}\right)
$$

(6) Move to the 4 th row

$$
\begin{aligned}
& \text {.) divide it by }-1 \\
& \text { therefore } \\
& \text { for } n \text { in range (Not): } \\
& \left(\begin{array}{cccc}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & (1)
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
-2 \\
3.6 \\
-2 \\
1
\end{array}\right)
\end{aligned}
$$

Now we can simply use
$\Rightarrow$ BACKSUBSTITUTION
starting from

$$
\left\{\begin{array}{l}
z=1 \\
y=-2 \\
x-2.8 y-z=3.6 \Rightarrow x=-1 \\
w+0.5 x+2 y+0.5 z=-2 \Rightarrow w=2
\end{array}\right.
$$

NOTE: Since in Python, the elements start from zero, it is useful to kep the following notation in mind when writing the code

$$
A x=v
$$

$$
\left(\begin{array}{llll}
A_{00} & A_{01} & A_{02} & A_{03} \\
A_{10} & A_{11} & A_{12} & A_{13} \\
A_{20} & A_{21} & A_{22} & A_{23} \\
A_{30} & A_{31} & A_{32} & A_{33}
\end{array}\right)\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
v_{0} \\
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

And after the Gaussian Elimination

$$
\left(\begin{array}{cccc}
1 & a_{01} & a_{02} & a_{03} \\
0 & 1 & a_{12} & a_{13} \\
0 & 0 & 1 & a_{23} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
v_{0} \\
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

For the code, consider
 of on in rang (Nod $-1,(1)-1)$
this means

$$
\begin{array}{ll}
\text { Not- - 1: } & n=3 \\
\text { Not- 2: } & n=2 \\
\text { Not - 3: } & n=1
\end{array}
$$

$\Rightarrow$ Not -4: $n=0$ gas up to one before

$$
\begin{aligned}
& z=v_{3} \Rightarrow x[\text { tot }-1]=\frac{v_{3}}{v[\text { Not }-1]} \\
& y+a_{23} z=v_{2} \Rightarrow x\left[\text { Not-2] }=\frac{v_{2}}{v\left[N_{t o t}-2\right]}-\frac{a[2,3]}{a\left[N_{t o t}-2, N+t-1\right]} \times \frac{z}{\times\left[N_{t o t}-1\right]}\right. \\
& x+a_{12} y+a_{13} z=v_{1} \Rightarrow x\left[\text { Ntot-3] }=\frac{v_{1}}{v\left[N_{\text {tot }}-3\right]}-a\left[N_{\text {tot }}-3, N+N t_{0}+2\right] \times \frac{y}{x\left[N t_{0} t-2\right]}\right. \\
& -\frac{a[1,3]}{a\left[N_{\text {tot }}-3, N_{\text {tot }}-1\right] \times[\text { Not-1] }} \\
& w+a_{01} x+a_{02} y+a_{03} z=v_{0} \Rightarrow \\
& \Rightarrow x[\text { Not }-4]=\frac{v_{0}}{v[\text { Not }-4]}-\frac{a[0,1]}{a[\text { tot }-4, \text { Not }-3]} \times[\text { Not }-3] \\
& \frac{a[0,2]}{-a\left[N_{\text {ot }}-4, N_{t o t}-2\right]} \frac{y}{\times\left[N_{t o t}-2\right]} \\
& -\frac{a[0,3]}{a\left[N_{\text {tot }}-4, N_{\text {tot }}-1\right] \times\left[N_{\text {tot }}-1\right]}
\end{aligned}
$$

(for $n$ in range $($ Ntot-1, $-1,-1)$ :

$$
x[n]=v[n]
$$

which means

$$
K=n+1
$$

$$
k=n+2
$$

$$
K=N \text { tot }-1
$$

$$
x[n]=x[n]-a[n, k] * x[k]
$$

Pivoting
What should we do if we encounter the situation whore we would to divide by gro?

Example:

$$
\left(\begin{array}{rrrr}
0 & 1 & 4 & 1 \\
3 & 4 & -1 & -1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-4 \\
3 \\
9 \\
7
\end{array}\right)
$$

We should swap (pivot) the row with one row below, where the element is farthest from zoo (either positive or negative).

In the example above, that means pivoting the dst and $2 n d$ row (A and v), and then deal with

$$
\left(\begin{array}{cccc}
\frac{3}{0} & \frac{4}{1} & -1 & \frac{-1}{4} \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 \\
-4 \\
9 \\
7
\end{array}\right)
$$

