```
#
# This lecture contains
#
# a brief discussion about Taylor Expansion
#
# and then
#
# we move to chapter 6 of the book
# and study SIMULTANEOUS LINEAR EQUATIONS
```

```
#
# TAYLOR EXPANSION
# -_-_-_---_-_-_-_-_--
# By using a Taylor expansion we can approximate a given function f(x)
# at a certain point x=a
# by a polynomial.
```

\# The concept of a Taylor series was formulated by the Scottish mathematician
\# James Gregory and formally introduced by the English mathematician
\# Brook Taylor in 1715. If the Taylor series is centered at zero,
\# then that series is also called a Maclaurin series.
\# The polynomial that approximates $f(x)$ at $x=a$ is the
\# nth degree TAYLOR polynomial:
\# $P(x)=f(a)+f^{\prime}(a)(x-a)+\left(f{ }^{\prime \prime}(a)\right) / 2!(x-a)^{\wedge} 2+\ldots+\left(f(a)^{\wedge}(n)(a)\right) / n!(x-a)^{\wedge} n$
\# Example:
\# $\sin (x)$ close to $x=0$ is
\# $\sin (x) \sim x-x^{\wedge} 3 / 3!+x^{\wedge} 5 / 5!\quad .$.
\# With this expansion, it becomes easy to study the limit sin(x)/x

```
# ------
# SYMPY
# ------
# In Python, we can use SYMPY to get Taylor expansions.
# Example: Expansion of cos(x) around x=0
import sympy as syp
x = syp.Symbol('x')
# choose n=5 if you want the expansion up to x^4
ff=syp.series(syp.cos(x), x,x0=0,n=5)
print( 'cos(x) ~', ff )
f2 = ff.removeO()
print( 'cos(x) up to x^3: ', f2 )
```

```
print()
```



```
# CAREFUL!! ff and f2 are symbolic expressions
# We cannot use them as functions
# Check what happens with the lines below
# NOT SOLVED!!
print("The function is not solved!")
def func(x):
    return f2
print(func(3))
print()
# WE COULD COPY THE FUNCTION
print('Solved because we copied the function')
x=3
gg = x**4/24 - x**2/2 + 1
print('Taylor of cos up to x^4 with x=3: ', gg)
# WE CAN LAMBDIFY THE EXPRESSION
#
# CAREFUL!! Since above x became the number 3
# Say again that "x" is a SYMBOL
x = syp.Symbol('x')
# To convert a SymPy expression to an expression that can be
# numerically evaluated, use the lambdify function.
print()
print("Now it is solved, because we lambdified the function!")
g2 = syp.lambdify(x,f2)
print(g2(3))
# Now that we have g2 as a FUNCTION of x
# We can get g2 for various values of x
# -----------------------------------------------------------------------
import numpy as np
x = np.arange(1, 2.1, 0.1)
g2(x)
print()
print("And with numpy we can get all values at once")
print(x)
print(g2(x))
# -----------
```

\# Make a plot of sin(x) and
\# the first, third, fifth and seventh degree Taylor polynomials
\# for x from $x=-3.5$ to $x=3.5$ in increments 0.01 .
\# Label your curves.

```
# -------------------------------------------------------------------
# After this review of Taylor expansion, we can understand why
# the central difference gives a better approximation to the
# derivative of a function than
# the forward or backward differences
# See Sec.5.10.2 and Sec.5.10.3 of the book.
# ----------------------------------------------------------------------
```


 \#

```
print()
# -------------------------------------------------------------------
# CHAPTER 6 of the book
# -------------------------------------------------------------------
# NOTE: chapters beyond chapter 5 are NOT available online!!
# To read them, you can get the book in the library
```

```
# Suppose we want to solve the following four simultaneous equations
# for the variables w, x, y, and z
#
# 2w + x + 4y + z = - 4
# 3w + 4x - y - z = 3
# w-4x + y + 5z = 9
# 2w - 2x + y + 3z = 7
# which can be written in a matrix form as
# A x = v
# where
import numpy as np
A = np.array([[2, 1, 4, 1],
```

$$
\begin{gathered}
{[3,4,-1,-1],} \\
{[1,-4,1,5],} \\
[2,-2,1,3]], \text { float }) \\
v=\text { np.array }([-4,3,9,7], \text { float })
\end{gathered}
$$

```
print("Using 'solve' from numpy.linalg")
# -----------------
# LINALG and SOLVE
# -----------------
# This can be done with the
# module LINALG of the
# NUMPY package
# with the function SOLVE
import numpy.linalg as npa
x = npa.solve(A,v)
print('w, x, y, z = ',x)
print()
print("Using 'inv' from numpy.linalg")
# -----------------
# LINALG and INV
# -----------------
# We can also find the inverse of A
# and use A^{-1}.A.x = x = A^{-1}.v
# to find v.
# The inverse is also contained in numpy.linalg
# and is called "inv"
Ainv = npa.inv(A)
sol = np.dot(Ainv,v)
print('w, x, y, z = ',sol)
# BUT, calculating the inverse of a matrix is a
# slow process. Unless the inverse is really needed,
# it is better to avoid it.
```

```
#%%
# WHAT IS BEHIND THE FUNCTION SOLVE?
# Python uses the LU decomposition and backsubstitution.
# To understand what this is, let us start with
# Gaussian elimination and backsubstitution
```

\# ----------------------
\# GAUSSIAN ELIMINATION
\# --------------------
\# Follow the PDF notes called "GaussianElimination"
\# and write a code to find w, x, y, and z for the \# system of linear equations written above.

```
# The purpose of the Gaussian elimination is to write
# the matrix A as an upper triangular matrix,
# so that w, x, y, z can be obtained by backsubstitution.
```


import numpy as np

$A=n p . \operatorname{array}([[2,1,4,1]$,
$[3,4,-1,-1]$,
$[1,-4,1,5]$,
$[2,-2,1,3]]$, float)
$v=n p . \operatorname{array}([-4,3,9,7], f l o a t)$
Ntot $=\operatorname{len}(v)$
\# Gaussian Elimination
\#
for n in range(Ntot):
\# Divide the row by the diagonal element
\# to get the element 1.
$\operatorname{div}=A[n, n]$
\# NOTE: that we can do the operation on the entire row using ':' as below
\# Alternatively, we could have a loop here.
$A[n,:]=A[n,:] / d i v$
$v[n]=v[n] / d i v$
\# The simplified notation below do the same as above
\# A[n,:] /= div
\# v[m] /= div
\# PRINT to be sure it is doing what we want print()
print('n=',n)
print('A[n,:]=', $A[n,:], '$ and $v[n]=', v[n])$

```
# ---------------------------------------------------------------------------
    # Now we do (lower row) - (num)*(row just divided by diagonal element)
    # to get the element 0.
    for k in range(n+1,Ntot):
        mult=A[k,n]
        A[k,:] = A[k,:] - mult*A[n,:]
        v[k] = v[k] - mult*v[n]
        # The simplified notation below do the same as above
        # A[k,:] - = mult*A[n,:]
        # v[m] - = mult*v[n]
        # PRINT to be sure it is doing what we want
# print('k=',k)
# print('A[k,:]=', A[k,:], ' and v[k]=', v[k])
```

```
#
# BACKSUBSTITUTION
# create an array of zeros, where the solution will be stored
x = np.zeros(Ntot,float)
# n below goes from n=Ntot-1=3 to n=0 (one before the last term -1)
for n in range(Ntot-1,-1,-1):
    x[n] = v[n]
    # k below goes from k=n+1 to k=Ntot-1 (one before the last term Ntot)
    for k in range(n+1,Ntot):
        x[n] = x[n] - A[n,k]*x[k]
print('w, x, y, z =', x)
# --------------------
# PIVOTING
# --------------------
# If an element of A is zero, which would lead to a division by zero,
# we swap the row with another one that has the farthest element from zero.
# See the PDF notes called "GaussianElimination".
```

```
# --------------------
```

LU DECOMPOSITION

LU DECOMPOSITION

Follow the PDF notes called "LUdecomposition"

Follow the PDF notes called "LUdecomposition"

to understand what this decomposition is.

to understand what this decomposition is.

The basic idea is to write the A matrix as a

The basic idea is to write the A matrix as a

product of two matrices

product of two matrices

A = L U

A = L U

where

where

L is a lower triangular matrix

L is a lower triangular matrix

and

and

U is an upper triangular matrix

U is an upper triangular matrix

In fact, U is the matrix that we obtain after the

In fact, U is the matrix that we obtain after the

Gaussian elimination

Gaussian elimination

U = L3.L2.L1.L0.A

U = L3.L2.L1.L0.A

and L L L L0^{-1}.L1^{-1}.L2^{-1}.L3^{-1}

and L L L L0^{-1}.L1^{-1}.L2^{-1}.L3^{-1}

TRIDIAGONAL and BANDED matrices

```
\# When we have tridiagonal matrices or banded matrices, \# the code for the Gaussian elimination can (and should) be simplified! \#
\# For a tridiagonal problem, each row only needs to be subtracted \# from the single row immediately below it!!```

