
#
This lecture contains
#
a brief discussion about Taylor Expansion
#
and then
#
we move to chapter 6 of the book
and study SIMULTANEOUS LINEAR EQUATIONS

--

TAYLOR EXPANSION

By using a Taylor expansion we can approximate a given function f(x)
at a certain point x=a
by a polynomial.

The concept of a Taylor series was formulated by the Scottish mathematician
James Gregory and formally introduced by the English mathematician
Brook Taylor in 1715. If the Taylor series is centered at zero,
then that series is also called a Maclaurin series.

The polynomial that approximates f(x) at x=a is the
nth degree TAYLOR polynomial:
P(x) = f(a) + f'(a)(x-a)+(f''(a))/2! (x-a)^2+ ... + (f(a)^(n) (a))/n! (x-a)^n

Example:
sin(x) close to x=0 is
sin(x) ~ x - x^3/3! + x^5/5! ...
With this expansion, it becomes easy to study the limit sin(x)/x

SYMPY

In Python, we can use SYMPY to get Taylor expansions.
Example: Expansion of cos(x) around x=0

import sympy as syp
x = syp.Symbol('x')

choose n=5 if you want the expansion up to x^4
ff=syp.series(syp.cos(x),x,x0=0,n=5)
print('cos(x) ~', ff)

f2 = ff.removeO()
print('cos(x) up to x^3: ', f2)

print()

CAREFUL!! ff and f2 are symbolic expressions
We cannot use them as functions
Check what happens with the lines below

NOT SOLVED!!
print("The function is not solved!")
def func(x):
 return f2
print(func(3))

print()
WE COULD COPY THE FUNCTION
print('Solved because we copied the function')
x=3
gg = x**4/24 - x**2/2 + 1
print('Taylor of cos up to x^4 with x=3: ', gg)

WE CAN LAMBDIFY THE EXPRESSION

CAREFUL!! Since above x became the number 3
Say again that "x" is a SYMBOL
x = syp.Symbol('x')
To convert a SymPy expression to an expression that can be
numerically evaluated, use the lambdify function.
print()
print("Now it is solved, because we lambdified the function!")
g2 = syp.lambdify(x,f2)
print(g2(3))

Now that we have g2 as a FUNCTION of x
We can get g2 for various values of x

import numpy as np
x = np.arange(1, 2.1, 0.1)
g2(x)
print()
print("And with numpy we can get all values at once")
print(x)
print(g2(x))

Exercise 1

Make a plot of sin(x) and
the first, third, fifth and seventh degree Taylor polynomials
for x from x=-3.5 to x=3.5 in increments 0.01.
Label your curves.

After this review of Taylor expansion, we can understand why
the central difference gives a better approximation to the
derivative of a function than
the forward or backward differences
See Sec.5.10.2 and Sec.5.10.3 of the book.

--
--

print()

CHAPTER 6 of the book

NOTE: chapters beyond chapter 5 are NOT available online!!
To read them, you can get the book in the library

Suppose we want to solve the following four simultaneous equations
for the variables w, x, y, and z
#
2w + x + 4y + z = - 4
3w + 4x - y - z = 3
w - 4x + y + 5z = 9
2w - 2x + y + 3z = 7

which can be written in a matrix form as
A x = v
where
import numpy as np
A = np.array([[2, 1, 4, 1],

 [3, 4, -1, -1],
 [1, -4, 1, 5],
 [2, -2, 1, 3]], float)
v = np.array([-4, 3, 9, 7], float)

print("Using 'solve' from numpy.linalg")

LINALG and SOLVE

This can be done with the
module LINALG of the
NUMPY package
with the function SOLVE
import numpy.linalg as npa
x = npa.solve(A,v)
print('w, x, y, z = ',x)

print()
print("Using 'inv' from numpy.linalg")

LINALG and INV

We can also find the inverse of A
and use A^{-1}.A.x = x = A^{-1}.v
to find v.
The inverse is also contained in numpy.linalg
and is called "inv"
Ainv = npa.inv(A)
sol = np.dot(Ainv,v)
print('w, x, y, z = ',sol)
BUT, calculating the inverse of a matrix is a
slow process. Unless the inverse is really needed,
it is better to avoid it.

#%%
WHAT IS BEHIND THE FUNCTION SOLVE?
Python uses the LU decomposition and backsubstitution.
To understand what this is, let us start with
Gaussian elimination and backsubstitution

GAUSSIAN ELIMINATION

Follow the PDF notes called "GaussianElimination"

and write a code to find w, x, y, and z for the
system of linear equations written above.

The purpose of the Gaussian elimination is to write
the matrix A as an upper triangular matrix,
so that w, x, y, z can be obtained by backsubstitution.

import numpy as np

A = np.array([[2, 1, 4, 1],
 [3, 4, -1, -1],
 [1, -4, 1, 5],
 [2, -2, 1, 3]], float)
v = np.array([-4, 3, 9, 7], float)

Ntot = len(v)

Gaussian Elimination
--
for n in range(Ntot):
 # Divide the row by the diagonal element
 # to get the element 1.
 div = A[n,n]
 # NOTE: that we can do the operation on the entire row using ':' as below
 # Alternatively, we could have a loop here.
 A[n,:] = A[n,:]/div
 v[n] = v[n]/div
 # The simplified notation below do the same as above
 # A[n,:] /= div
 # v[m] /= div

 # PRINT to be sure it is doing what we want
print()
print('n=',n)
print('A[n,:]=', A[n,:], ' and v[n]=', v[n])

--
 # Now we do (lower row) - (num)*(row just divided by diagonal element)
 # to get the element 0.
 for k in range(n+1,Ntot):
 mult=A[k,n]
 A[k,:] = A[k,:] - mult*A[n,:]
 v[k] = v[k] - mult*v[n]
 # The simplified notation below do the same as above
 # A[k,:] - = mult*A[n,:]
 # v[m] - = mult*v[n]
 # PRINT to be sure it is doing what we want
print('k=',k)
print('A[k,:]=', A[k,:], ' and v[k]=', v[k])

--
BACKSUBSTITUTION
create an array of zeros, where the solution will be stored
x = np.zeros(Ntot,float)
n below goes from n=Ntot-1=3 to n=0 (one before the last term -1)
for n in range(Ntot-1,-1,-1):
 x[n] = v[n]
 # k below goes from k=n+1 to k=Ntot-1 (one before the last term Ntot)
 for k in range(n+1,Ntot):
 x[n] = x[n] - A[n,k]*x[k]

print('w, x, y, z =', x)

PIVOTING

If an element of A is zero, which would lead to a division by zero,
we swap the row with another one that has the farthest element from zero.
See the PDF notes called "GaussianElimination".

LU DECOMPOSITION

Follow the PDF notes called "LUdecomposition"
to understand what this decomposition is.
The basic idea is to write the A matrix as a
product of two matrices
A = L U
where
L is a lower triangular matrix
and
U is an upper triangular matrix
#
In fact, U is the matrix that we obtain after the
Gaussian elimination
U = L3.L2.L1.L0.A
#
and L = L0^{-1}.L1^{-1}.L2^{-1}.L3^{-1}

TRIDIAGONAL and BANDED matrices

When we have tridiagonal matrices or banded matrices,
the code for the Gaussian elimination can (and should) be simplified!

For a tridiagonal problem, each row only needs to be subtracted
from the single row immediately below it!!

