Space-time Diagram

Events are fundamental

Let's ignore \(y' = y \) and \(z' = z \)

1. Events A and D occur at the same place
 at \(\pm \) times
 \(t_A - t_D \rightarrow \) proper time, as measured by
 clock 2

2. Events A and B are simultaneous

3. Event C happened before the present
 (we consider \(ct = ct' = 0 \) to be the present)

Worldline: trajectory a particle on the space-time diagram

- Particle 1 is at rest
- Particle 2 moves at \(u < c \)
 \[u = \frac{dx}{dt} \]
- Particle 3 moves at \(c \) (light pulse)
- Particle 4 slows down

Worldline of light flashes: nothing moves faster than light
S' moves in the $+x$ direction of S at v.

They coincide at $t=t'=0$ ($x=x'=0$).

How does S' appear in the spacetime diagram of S?

1. The worldline of $x=0$ in S is the ct axis.
2. The worldline of $x'=0$ in S' is the ct' axis.

To find the ct axis in the spacetime diagram of S:

\[x' = \gamma(x - vt) \]

\[\frac{v}{t} = \frac{x}{ct} \Rightarrow ct = \frac{x}{\sqrt{1 - \beta^2}} \]

To find the x' axis in the spacetime diagram of S:

x' axis is the axis for all points where $ct' = 0$.

Use Lorentz transformation:

\[t' = \gamma \left(t - \frac{\gamma}{ct'} x \right) \Rightarrow t = \frac{\gamma}{c^2} x = \frac{1}{\beta} x \]

Event:

\[\{ A \text{ and } B: \text{ simultaneous in } S' \} \]

\[\{ B \text{ and } C: \text{ same place in } S' \} \]
Example 1-7

Two events occur at the same point \(x_0 \) at times \(t_1 \) and \(t_2 \) in \(s_1 \), which moves with speed \(v \) relative to \(s \). What is the spatial separation of these events measured in \(s \)?

\[
\Delta x = \beta \left(\Delta x_1 + v \Delta t_1 \right) = \Delta x_0 \beta
\]

- \(\Delta x_0 = 5 \) (\(\Delta x_1, \Delta t_1 \) axis)

\[
\Delta x = 5 \left(\frac{5}{c} \right) = 5 \beta \left(\frac{5}{c} \right) = 1.15 \left(\frac{5}{c} \right)
\]

\[
\Delta x = 1.15 \text{ m}
\]