- Basis for the total Hilbert space $\mathbf{2}^{L}$

$\mathrm{L}=$ chain size;
$\operatorname{dim}=$ dimension of the total Hilbert space, 2^{L};
basis $=$ each list (array) corresponds to a basis vector.

```
Clear[L, dim, basis];
L = 4;
dim = 2^L;
Do [
        basis[i] = IntegerDigits[i-1, 2, L];
        Print["Basis vector ", i, " is ", basis[i]];
        , {i, 1, dim}];
Basis vector 1 is {0, 0, 0, 0}
Basis vector 2 is {0, 0, 0, 1}
Basis vector 3 is {0, 0, 1, 0}
Basis vector 4 is {0, 0, 1, 1}
Basis vector 5 is {0, 1, 0, 0}
Basis vector 6 is {0, 1, 0, 1}
Basis vector 7 is {0, 1, 1, 0}
Basis vector 8 is {0, 1, 1, 1}
Basis vector 9 is {1, 0, 0, 0}
Basis vector 10 is {1, 0, 0, 1}
Basis vector }11\mathrm{ is {1, 0, 1, 0}
Basis vector 12 is {1, 0, 1, 1}
Basis vector 13 is {1, 1, 0, 0}
Basis vector 14 is {1, 1, 0, 1}
Basis vector 15 is {1, 1, 1, 0}
Basis vector 16 is {1, 1, 1, 1}
```


EXERCISE 1:

Basis with a fixed number (L/2) of up-spins

$\mathrm{L}=$ chain size;
dim $=$ dimension of the subspace with "upspins" spins pointing up in the z direction and "downspins" spin pointing down;
onebasisvector $=$ a single basis vectors from all the possible ones;
basis $=$ each list (array) corresponds to a basis vector.

```
Clear[L, upspins, downspins, dim];
L = 6;
upspins = L / 2;
downspins = L - upspins;
dim = L! / (upspins! downspins!);
(* BASIS *)
Clear[onebasisvector, basis];
onebasisvector = Flatten[{Table[1, {k, 1, upspins}], Table[0, {k, 1, downspins}]}];
basis = Permutations[onebasisvector];
Do[
    Print["Basis vector ", i, " is ", basis[[i]]];
    , {i, 1, dim}];
Basis vector 1 is {1, 1, 1, 0, 0, 0}
Basis vector 2 is {1, 1, 0, 1, 0, 0}
Basis vector 3 is {1, 1, 0, 0, 1, 0}
Basis vector 4 is {1, 1, 0, 0, 0, 1}
Basis vector 5 is {1, 0, 1, 1, 0, 0}
Basis vector 6 is {1, 0, 1, 0, 1, 0}
Basis vector }7\mathrm{ is {1, 0, 1, 0, 0, 1}
Basis vector 8 is {1, 0, 0, 1, 1, 0}
Basis vector 9 is {1, 0, 0, 1, 0, 1}
Basis vector 10 is {1, 0, 0, 0, 1, 1}
Basis vector 11 is {0, 1, 1, 1, 0, 0}
Basis vector 12 is {0, 1, 1, 0, 1, 0}
Basis vector 13 is {0, 1, 1, 0, 0, 1}
Basis vector }14\mathrm{ is {0, 1, 0, 1, 1, 0}
Basis vector 15 is {0, 1, 0, 1, 0, 1}
Basis vector 16 is {0, 1, 0, 0, 1, 1}
Basis vector 17 is {0, 0, 1, 1, 1, 0}
Basis vector 18 is {0, 0, 1, 1, 0, 1}
Basis vector 19 is {0, 0, 1, 0, 1, 1}
Basis vector }20\mathrm{ is {0, 0, 0, 1, 1, 1}
```

