
Assignment 08

Solve the differential equation 
dy

dx
= xy with initial condition y(1)=2 and graph 

the solution for -2 <= x <= 2.

Clear[solu];
solu = DSolve[{y'[x]  x y[x], y[1]  2}, y[x], x]
Clear[f];
f = solu〚1, 1, 2〛
Plot[f, {x, -2, 2}, PlotStyle  {Blue, Thick},
AxesLabel  {"x", "y"}, LabelStyle  Directive[Black, Bold, Medium]]

y[x]  2 
-
1

2
+
x2

2 

2 
-
1

2
+
x2

2

-2 -1 1 2
x

2

4

6

8

y



According to Newton’s  law of cooling, the temperature  of an object changes at 
a rate proportional to the difference in temperature  between the object and the 

outside medium. If an object whose temperature  is 70oF is placed in a medium 

whose temperature  is 20oF,  and is found to be 40oF after 3 minutes, what will its
temperature  be after 6 minutes?

Do not worry if Mathematica complains when you try to find the constant  of the 

equation.

Clear[solu];
solu = DSolve[{Temp'[t]  k (Temp[t] - 20), Temp[0]  70}, Temp[t], t];
Print["Solution of the equation"];
Clear[EqT];
EqT = solu〚1, 1, 2〛

Print["Finding the constant of the equation"];
Clear[ct];
ct = Solve[(EqT /. t  3)  40, k];
const = ct〚1, 1, 2〛

Print["Final expression for temperature"];
Clear[FinalEq];
FinalEq = EqT /. k  const

Print["Temperature at 6 min is ", FinalEq /. t  6, " F."];

Solution of the equation

10 × 2 + 5 
k t



Finding the constant of the equation

Solve : : ifun : Inverse functions are being used by  Solve , so some solut ions may not be found; use Reduce for

complete solut ion information. 
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Final expression for temperature

10 × 2 + 2t/3 × 51-
t

3

Temperature at 6 min is 28 F.

A baseball is hit with velocity of 100 ft/s at an angle of 30o with the horizontal. 
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The height of the bat is 3 ft above the ground. Neglecting air and wind 

resistance,  
(a) will it clear a 35-ft-high  fence located 200 ft from home plate? 

(b) Make a plot of the trajectory of the baseball. Label the axes. 
[Hint: use parametric plot]
(Assume g = 32.16 ft/s^2)

Clear[x, y, vo, theta, h, g];
vo = 100.;
theta = 30 Degree;
h = 3.;
g = 32.16;

Clear[solu];
solu = DSolve[{y''[t]  -g, x''[t]  0, y[0]  h, x[0]  0,

y'[0]  vo Sin[theta], x'[0]  vo Cos[theta]}, {x[t], y[t]}, t];

Print["Equations for vertical and horizontal motions"];
Clear[hori, vert];
vert = solu〚1, 1, 2〛
hori = solu〚1, 2, 2〛

Print["Time it takes to reach x = 200 ft"];
Clear[tt, time];
tt = Solve[hori  200];
time = tt〚1, 1, 2〛

Print["The vertical position when the ball reaches x = 200 ft"];
Clear[yAt200];
yAt200 = vert /. t  time
Print["is smaller than 35 ft, so it won't clear the fence."]

Print[]
Print["Plot of the trajectory"]
ParametricPlot[{hori, vert}, {t, 0, 3.5}, AxesLabel  {"x", "y"}]

Equations for vertical and horizontal motions

3. + 50. t - 16.08 t2
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86.6025 t

Time it takes to reach x = 200 ft

2.3094

The vertical position when the ball reaches x = 200 ft

32.7101

is smaller than 35 ft, so it won't clear the fence.

Plot of the trajectory
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At what angle should the ball in the previous problem be hit so that it goes over 
the fence? Give you answer in degrees not radians.
Do not worry about complaints of Mathematica about the existence  of more 

solutions. Every angle added by 2Pi is also a solution, this is why it complains.
Discard negative angles.

Clear[x, y, vo, theta, h, g];
vo = 100.;
h = 3.;
g = 32.16;

Clear[solu];
solu = DSolve[{y''[t]  -g, x''[t]  0, y[0]  h, x[0]  0,

y'[0]  vo Sin[theta], x'[0]  vo Cos[theta]}, {x[t], y[t]}, t];

Print["Equations for vertical and horizontal motions"];
Clear[hori, vert];
vert = solu〚1, 1, 2〛
hori = solu〚1, 2, 2〛

Print["Time it takes to reach x = 200 ft"];
Clear[tt, time];
tt = Solve[hori  200];
time = tt〚1, 1, 2〛

Print["The angle to guarantee that the ball reaches y=35ft at x=200ft"];
Clear[ang];
ang = Solve[(vert /. t  time)  35, theta];

Do[
If[ang〚k, 1, 2〛 > 0, Print["Possible angle = ", ang〚k, 1, 2〛 180 / Pi, " Degree"]];
, {k, 1, Length[ang]}]

Equations for vertical and horizontal motions

3. - 16.08 t2 + 100. t Sin[theta]

100. t Cos[theta]

Time it takes to reach x = 200 ft

2. Sec[theta]

The angle to guarantee that the ball reaches y=35ft at x=200ft
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Solve : : ifun : Inverse functions are being used by  Solve , so some solut ions may not be found; use Reduce for

complete solut ion information. 

Possible angle = 30.7838 Degree

Possible angle = 68.3065 Degree

The equation governing the amount of current I, flowing through a simple 

resistance-inductance  circuit when an EMF (voltage) is applied is
L 
dI
dt
+R I = E. The units for E, I, and L are respectively volts, amperes, and 

henries. If R = 10 ohms, L=1 henry, the EMF source is an alternating voltage 

whose equation is E(t)=10 sin(5t), and the current is initially 4 amperes, find an 

expression for the current at time t and plot the graph of the current for the first 
3 seconds.

Clear[R, L, emf];
R = 10.;
L = 1.;
emf = 10 Sin[5 t];

Clear[sol, curr];
sol = DSolve[{curr'[t] + R curr[t]  emf, curr[0]  4.}, curr[t], t];

Clear[current];
current = Chop[sol〚1, 1, 2〛]

Plot[current, {t, 0, 3}, PlotStyle  {Thick, Blue}, AxesLabel  {"t", "Current"},
PlotRange  All, LabelStyle  Directive[Black, Bold, Medium]]
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If a spring with mass m attached at one end is suspended from its other end, it 
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will come to rest in an equilibrium position. If the systems is then perturbed by 

releasing the mass with an initial velocity of vo at a distance  yo below its 

equilibrium position, its motion satisfies the differential equation

m 
d2 y

dt2
+ a 

dy

dt
+k y = 0, 

y’(0)=vo,
y(0)=yo.
Above, “a” is the damping constant  (determined experimentally) due to friction 

and air resistance,  and k is the spring constant  given in Hooke’s  law.

A mass of 1/4 slug is attached to a spring with a spring constant  k=6lb/ft. The 

mass is pulled downward from its equilibrium position 1 ft (that is, yo=-1) and 

then released. Assuming a damping constant  a=1/2, determine the motion of 
the mass and sketch its graph for the first 5 seconds.

Clear[m, vo, yo, k, a, y, t];
m = 1 / 4.;
vo = 0;
yo = -1.;
a = 1 / 2.;
k = 6;

Clear[sol];
sol = DSolve[{m y''[t] + a y'[t] + k y[t]  0, y'[0]  vo, y[0]  yo}, y[t], t]

Plot[sol〚1, 1, 2〛, {t, 0, 5}, PlotStyle  {Thick, Blue},
AxesLabel  {"t", "Height"}, PlotRange  All,
LabelStyle  Directive[Black, Bold, Medium]]

y[t]  
-1. t

(-1. Cos[4.79583 t] - 0.208514 Sin[4.79583 t])
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The logistic equation for population growth
dp

dt
 = a p - b p2

was discovered in the mid-nineteenth century by the biologist Pierre Verhulst. 
The constant  “b” is generally small in comparison to “a” so that for small 
population size p, the quadratic term in p will be negligible and the population 

will grow approximately exponentially. For large p, however,  the quadratic 

term serves to slow down the rate of the growth of the population. 
a) Solve the logistic equation for general values of the constants  a, b, and initial 
population po. [Do not worry if Mathematica says that more solutions could not 
be found]
b) Sketch the solution for a=2, b=0.05 and an initial population po=10. [Range of 
t from 0 to 5].
c) Determine the limiting value of the population at t-> infinity.

Clear[a, b, po, p, sol];

Print["Item (a)"]
sol = DSolve[{p'[t]  a p[t] - b p[t]^2, p[0]  po}, p[t], t]

Print[];
Print["Item (b)"]
Plot[sol〚1, 1, 2〛 /. {po  10, a  2, b  0.05}, {t, 0, 5},
PlotStyle  {Thick, Blue}, AxesLabel  {"t", "Population"}, PlotRange  All,
LabelStyle  Directive[Black, Bold, Medium], AxesOrigin  {0, 0} ]

Print[];
Print["Item (b)"]
Limit[sol〚1, 1, 2〛 /. {po  10, a  2, b  0.05}, t  Infinity]

Item (a)

Solve : : ifun : Inverse functions are being used by  Solve , so some solut ions may not be found; use Reduce for

complete solut ion information. 

p[t] 
a a t po

a - b po + b a t po
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Item (b)
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Plot the solution to the differential equation
d2 y

dt2
+ ( dy

dt
+1)^2 

dy

dt
+ y =0

y(0)=1
y’(0)=0
for 0<= t <= 10

Clear[y, t, sol];
sol = NDSolve[{y''[t] + (y'[t] + 1)^2 × y'[t] + y[t]  0, y[0]  1, y'[0]  0},

y[t], {t, 0, 10}];

Clear[f];
f = sol〚1, 1, 2〛;
Plot[f, {t, 0, 10}, PlotStyle  {Thick, Blue},
LabelStyle  Directive[Black, Bold, Medium]]
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