Assignment 07

Using the bisection method find the real zero of:
(i) $x \operatorname{Exp}[x]=1$
(ii) $\operatorname{Cos}[x]=x$

```
Print["Item (i)"];
Clear[f, x];
f[x_] := x Exp[x] - 1.;
Table[{x/2, f[x/2]}, {x, -1, 2}]
Item (i)
{{-\frac{1}{2},-1.30327},{0,-1.},{\frac{1}{2},-0.175639},{1,1.71828}}
Clear[x1, x2, xforfindroot];
x1 = 1 / 2;
x2 = 1;
xforfindroot = x1;
Do [
        mid = (x1 + x2) / 2.;
        Print["Iteration ", k];
        Print["Approximation to the root = ", mid];
        If[f[x] }\times\textrm{f}[mid] == 0, Goto[end]]
        If[f[x1] < f[mid] < 0, {x1 = x1, x2 = mid}, {x1 = mid, x2 = x2}];
        , {k, 1, 20}];
```

 Label[end];
 If[f[x] \(\times f[m i d]=0, \operatorname{Print}[" T h e ~ r o o t ~ i s ~ ", ~ m i d]] ; ~\)
 Print[];
 Print["The actual root is ", FindRoot[f[x] == 0, \{x, xforfindroot\}]];
 Iteration 1
 Approximation to the root \(=0.75\)
 Iteration 2
 Approximation to the root \(=0.625\)
 Iteration 3
    ```
Approximation to the root = 0.5625
Iteration 4
Approximation to the root = 0.59375
Iteration 5
Approximation to the root = 0.578125
Iteration 6
Approximation to the root = 0.570313
Iteration 7
Approximation to the root = 0.566406
Iteration 8
Approximation to the root = 0.568359
Iteration 9
Approximation to the root = 0.567383
Iteration 10
Approximation to the root = 0.566895
Iteration 11
Approximation to the root = 0.567139
Iteration 12
Approximation to the root = 0.567261
Iteration 13
Approximation to the root = 0.5672
Iteration 14
Approximation to the root = 0.567169
Iteration 15
Approximation to the root = 0.567154
Iteration 16
Approximation to the root = 0.567146
Iteration 17
Approximation to the root = 0.567142
Iteration 18
Approximation to the root = 0.567144
Iteration 19
Approximation to the root = 0.567143
Iteration 20
Approximation to the root = 0.567143
```

```
The actual root is {x->0.567143}
Print["Item (ii)"];
Clear[f, x];
f[x_] := Cos[1. x] - x;
Table[{x/2, f[x/2]}, {x, -1, 2}]
Item (ii)
{{-\frac{1}{2},1.37758},{0,1.},{\frac{1}{2},0.377583},{1,-0.459698}}
Clear[xforfindroot, x1, x2];
x1 = 1 / 2;
x2 = 1;
xforfindroot = x1;
Do[
    mid = (x1 + x2) / 2.;
    Print["Iteration ", k];
    Print["Approximation to the root = ", mid];
    If[f[x] }\times\textrm{f}[mid] == 0, Goto[end]]
```



```
    , {k, 1, 20}];
Label[end];
If[f[x] }\times\textrm{f}[mid] == 0, Print["The root is ", mid]]
Print[];
Print["The actual root is ", FindRoot[f[x] == 0, {x, xforfindroot}]]
Iteration 1
Approximation to the root = 0.75
Iteration 2
Approximation to the root = 0.625
Iteration 3
Approximation to the root = 0.6875
Iteration 4
Approximation to the root = 0.71875
Iteration 5
Approximation to the root = 0.734375
Iteration 6
Approximation to the root = 0.742188
Iteration 7
Approximation to the root = 0.738281
```

```
Iteration 8
Approximation to the root = 0.740234
Iteration 9
Approximation to the root = 0.739258
Iteration 10
Approximation to the root = 0.73877
Iteration 11
Approximation to the root = 0.739014
Iteration 12
Approximation to the root = 0.739136
Iteration 13
Approximation to the root = 0.739075
Iteration 14
Approximation to the root = 0.739105
Iteration 15
Approximation to the root = 0.73909
Iteration 16
Approximation to the root = 0.739082
Iteration 17
Approximation to the root = 0.739086
Iteration 18
Approximation to the root = 0.739084
Iteration 19
Approximation to the root = 0.739085
Iteration 20
Approximation to the root = 0.739085
```

The actual root is $\{x \rightarrow 0.739085\}$

Using the method of false position, find the zero of:
[hint: you need to find the equation of the line connecting the points ($x 1, f(x 1)$) and ($\mathrm{x} 2, \mathrm{f}(\mathrm{x} 2$)), as you have done in a previous assignment]
(i) $\operatorname{Tan}[\mathrm{x}]=\frac{1}{1+\mathrm{x}^{2}} \quad 0<=\mathrm{x}<\pi / 2$
(ii) $\operatorname{Cos}[x]=x \quad$ [comparing with item (ii) above for the bisection method, which

method works faster for this case?]

To find the line
$y=a x+b$
passing through point ($\mathrm{x} 1, \mathrm{f}(\mathrm{x} 1)$) and ($\mathrm{x} 2, \mathrm{f}(\mathrm{x} 2)$), we need to solve the system of equations:
$\mathrm{f}(\mathrm{x} 1)=\mathrm{a} \times 1+\mathrm{b}$
$f(x 2)=a x 2+b$

From the first equation:
$b=f(x 1)-a x 1$,
which when substituted into the second equation gives
$\mathrm{a}=\frac{f(\mathrm{x} 2)-f(\mathrm{x} 1)}{\mathrm{x} 2-\mathrm{x} 1}$

The zero of the straight line is obtained when $\mathrm{y}=0$.
From $0=\mathrm{ax}+\mathrm{b} \Rightarrow \mathrm{x}=-\mathrm{b} / \mathrm{a} \Rightarrow \mathrm{x}=-\mathrm{f}(\mathrm{x} 1) / \mathrm{a}+\mathrm{x} 1$ we find the next point $x 3$ for the new interval:
intersec $=\mathrm{x} 3=\mathrm{x} 1-\mathrm{f}(\mathrm{x} 1) \frac{\mathrm{x} 2-\mathrm{x} 1}{f(\mathrm{x} 2)-f(\mathrm{x} 1)}$

Print["Item (i)"];
Clear[f, x];
$\mathrm{f}\left[\mathrm{x}_{-}\right]:=\operatorname{Tan}[1 . \mathrm{x}]-1 /\left(1+\mathrm{x}^{\wedge} 2\right)$
Table[\{x/2, f[x/2]\}, \{x, 0, 5\}]
Item (i)
$\left\{\{0,-1\},.\left\{\frac{1}{2},-0.253698\right\},\{1,1.05741\}\right.$,

$$
\left.\left\{\frac{3}{2}, 13.7937\right\},\{2,-2.38504\},\left\{\frac{5}{2},-0.884953\right\}\right\}
$$

```
Clear[xforfindroot, x1, x2];
x1 = 1 / 2;
x2 = 1;
xforfindroot = x1;
Do [
    intersec = x1 - f[x1] (x2 - x1) / (f[x2] - f[x1]);
    Print["Iteration ", k];
    Print["Approximation to the root = ", intersec];
    If[f[x1] }\times\textrm{f}[\textrm{intersec] == 0, {Print["I found the root!"], Break[]}];
    If[f[x1] > f[intersec] < 0, {x1 = x1, x2 = intersec}, {x1 = intersec, x2 = x2}];
    , {k, 1, 11}];
Print[];
Print["The actual root is ", FindRoot[f[x] == 0, {x, xforfindroot}]]
```

Iteration 1
Approximation to the root $=0.596749$
Iteration 2
Approximation to the root $=0.617728$
Iteration 3
Approximation to the root $=0.622484$
Iteration 4
Approximation to the root $=0.623574$
Iteration 5
Approximation to the root $=0.623825$
Iteration 6
Approximation to the root $=0.623882$
Iteration 7
Approximation to the root $=0.623896$
Iteration 8
Approximation to the root $=0.623899$
Iteration 9
Approximation to the root $=0.623899$
Iteration 10
Approximation to the root $=0.6239$
Iteration 11
Approximation to the root $=0.6239$

The actual root is $\{x \rightarrow 0.6239\}$

Print["Item (ii)"];
Clear[f, x];
$f\left[x_{-}\right]:=\operatorname{Cos}[1 . x]-x$;
Table[\{x/2, f[x/2]\}, \{x, -1, 2\}]
Item (ii)
$\left\{\left\{-\frac{1}{2}, 1.37758\right\},\{0,1\},.\left\{\frac{1}{2}, 0.377583\right\},\{1,-0.459698\}\right\}$

```
Clear[xforfindroot, x1, x2];
x1 = 1 / 2;
x2 = 1;
xforfindroot = x1;
Do [
    intersec = x1 - f[x1] (x2 - x1) / (f[x2] - f[x1]);
    Print["Iteration ", k];
    Print["Approximation to the root = ", intersec];
    If[f[x1] }\times\textrm{f}[\textrm{intersec] == 0, Goto[end]];
    If[f[x1] > f[intersec] < 0, {x1 = x1, x2 = intersec}, {x1 = intersec, x2 = x2}];
    , {k, 1, 11}];
Label[end];
If[f[x] \f[intersec] == 0, Print["The root is ", intersec]];
Print[];
Print["The actual root is ", FindRoot[f[x] == 0, {x, xforfindroot}]]
```

```
Iteration 1
Approximation to the root = 0.725482
Iteration 2
Approximation to the root = 0.738399
Iteration 3
Approximation to the root = 0.739051
Iteration 4
Approximation to the root = 0.739083
Iteration 5
Approximation to the root = 0.739085
Iteration 6
Approximation to the root = 0.739085
Iteration 7
Approximation to the root = 0.739085
Iteration 8
Approximation to the root = 0.739085
Iteration 9
Approximation to the root = 0.739085
Iteration 10
Approximation to the root = 0.739085
Iteration 11
Approximation to the root = 0.739085
```

The actual root is $\{x \rightarrow 0.739085\}$

The false - position method worked faster

```
Using Newton's method find the real zero of:
(i)}\operatorname{ArcTan}[x]=1 for x=
(ii) }\operatorname{Log}[x]=3 for x=1
Print["Item (i)"];
Clear[f, xint, df, xforfindroot];
f[x_] := ArcTan[x] - 1.;
xint = 1.;
df = D[f[x], x];
xforfindroot = xint;
Do[
    xint = xint - f[xint] / (df / . x -> xint);
    Print["Iteration ", k];
    Print["Approximation to the root = ", xint];
    , {k, 1, 5}]
Print[];
Print["The actual root is ", FindRoot[f[x] == 0, {x, xforfindroot}]]
Item (i)
Iteration 1
Approximation to the root = 1.4292
Iteration 2
Approximation to the root = 1.55006
Iteration 3
Approximation to the root = 1.55738
Iteration 4
Approximation to the root = 1.55741
Iteration 5
Approximation to the root = 1.55741
```

The actual root is $\{x \rightarrow 1.55741\}$

```
Print["Item (ii)"];
Clear[f, xint, df, xforfindroot];
f[x_] := Log[x] - 3.;
xint = 1.;
df = D[f[x],x];
xforfindroot = xint;
Do[
    xint = xint - f[xint] / (df /. x -> xint);
    Print["Iteration ", k];
    Print["Approximation to the root = ", xint];
    , {k, 1, 5}]
Print[];
Print["The actual root is ", FindRoot[f[x] == 0, {x, xforfindroot}]]
Item (ii)
Iteration 1
Approximation to the root = 4.
Iteration 2
Approximation to the root = 10.4548
Iteration 3
Approximation to the root = 17.2812
Iteration 4
Approximation to the root = 19.88
Iteration 5
Approximation to the root = 20.0845
```

The actual root is $\{x \rightarrow 20.0855\}$

Using Newton's method find the solutions for $f(x, y)=\exp (3 x)+4 y$ $g(x, y)=3 y^{\wedge} 3-2 \ln (x)+7.31 x^{\wedge} 2$
use as an initial guess xo=1 and yo=2

Stop when $|f|$ and $|g|$ are smaller than $10^{\wedge}(-5)$

```
f[x_, y_] = Exp[3. x] + 4 y;
g[x_, y_] = 3. y^ 3-2 Log[x] + 7.31 x^2;
FindRoot[{f[x,y],g[x,y]}, {x, 1}, {y, 2.}]
{x->0.466288,y }->-1.01265
```

```
Clear[f, g, dfx, dfy, dgx, dgy, xo, yo, fo, go, fx, fy, gx, gy, DD, Dx, Dy, h, k];
f[x_, y_] = Exp[3. x] + 4 y;
g[x_, y_] = 3. y^3 - 2 Log[x] + 7. 31 x^2;
dfx = D[f[x,y], x] ;
dfy = D[f[x,y], y] ;
dgx = D [g[x, y], x] ;
dgy = D[g[x,y], y] ;
xo = 1;
yo = 2.;
Do [
    fo = f[xo, yo];
    go = g[xo, yo];
    Print["xo and yo are ", {xo, yo}];
    Print["and the functions at those points are ", {f[xo, yo], g[xo, yo]}];
    Print[];
```

 If [Abs[fo] \(\leq 10^{\wedge}(-5) \& \& A b s[g o] \leq 10^{\wedge}(-5)\), \{Print[
 "I found approximate roots such that \(|f|\) and \(|g|\) are smaller than 10^(-5)"],
 Break[]\}];
 (* Print[\{fo,go\}];*)
 \(f x=d f x / .\{x \rightarrow x o, y \rightarrow\) yo \(\} ;\)
 fy \(=\) dfy \(/ . \quad\{x \rightarrow x o, y \rightarrow\) yo \(\} ;\)
 \(g x=d g x / .\{x \rightarrow\) xo, \(y \rightarrow\) yo \(\} ;\)
 gy = dgy /. \(\{x \rightarrow x o, y \rightarrow\) yo \(\} ;\)
 (* Print[\{fo,go,fx,fy,gx,gy\}]; *)
 \(D D=f x g y-g x f y ;\)
 \(D x=\) fo gy - go fy;
 \(D y=f x\) go - gx fo;
 (* Print[\{DD,Dx,Dy\}]; *)
 h = - Dx / DD;
 \(k=-D y / D D ;\)
 \(x o=x o+h ;\)
 yo = yo + k;
 , \{kk, 1, 20\}]
 xo and yo are $\{1,2$.
and the functions at those points are $\{28.0855,31.31\}$
xo and yo are $\{0.581906,1.27684\}$
and the functions at those points are $\{10.8374,9.80318\}$
xo and yo are $\{0.0653926,0.78722\}$
and the functions at those points are \{4.36562, 6.94951\}
xo and yo are $\{0.0902284,-0.32685\}$
and the functions at those points are $\{0.00346275,4.76558\}$
xo and yo are $\{0.308874,-0.542676\}$
and the functions at those points are $\{0.355257,2.56759\}$
xo and yo are \{0.642968, - 1.26442$\}$
and the functions at those points are \{1.82427, - 2.15919$\}$
xo and yo are $\{0.514669,-1.05828\}$
and the functions at those points are $\{0.450199,-0.290913\}$
xo and yo are \{0.469798, -1.01322\}
and the functions at those points are \{0.0405907, 0.00372875\}
xo and yo are $\{0.466302,-1.01264\}$
and the functions at those points are $\{0.000224309,0.000141854\}$
xo and yo are $\{0.466288,-1.01265\}$
and the functions at those points are $\left\{3.9533 \times 10^{-9}, 1.41164 \times 10^{-9}\right\}$

I found approximate roots such that $|\mathrm{f}|$ and $|\mathrm{g}|$ are smaller than $10^{\wedge}(-5)$

