Solution to Assignment 01

Compute the square root of π approximately.

Sqrt[1. Pi]

1.77245

Which one is bigger e^{π} or π^{e} ?

```
Exp[1.Pi]
Pi^(Exp[1.])
23.1407
22.4592
e}\mp@subsup{}{}{\pi}\mathrm{ is bigger than }\mp@subsup{\pi}{}{e
```

Compute the cube root of 26 approximately.

26.^(1/3)

2.9625

What is the volume and the surface area of Earth (the radius of Earth is 6378.1 $\mathrm{km})$?

$$
\begin{aligned}
& \mathrm{R}=6378.1 ; \\
& \mathrm{V}=(4 / 3) \mathrm{Pi}^{\wedge} \mathrm{B} \\
& \mathrm{~A}=4 \mathrm{Pi} \mathrm{R}^{\wedge} 2 \\
& 1.08683 \times 10^{12} \\
& 5.11202 \times 10^{8}
\end{aligned}
$$

Volume in $\mathrm{km}^{\wedge} 3$ and area in $\mathrm{km}^{\wedge} 2$

Compute the sine of 45°.

```
Sin[45 Degree]
Sin[45. Degree]
1
0.707107
```

What is a Fibonacci number (check online)? What is the 9th Fibonacci number? [hint: use help to find how to obtain a Fibonacci number in Mathematica]

The first two Fibonacci numbers, F_{0} and F_{1}, are 0 and 1. Each subsequent number is the sum of the previous two.
They are $0,1,1,2,3,5,8,13,21, \ldots$ obtained from $F_{n}=F_{n-1}+F_{n-2}$
In Mathematica, F_{1} is Fibonacci[1].
Fibonacci[9]
34

Compute the sum of the reciprocals of the odd numbers from 1 to 31 .
Give the exact and the approximate answer.

```
Sum[1/k, {k, 1, 31, 2}]
Sum[1./k, {k, 1, 31, 2}]
10686452707072
    4512611027925
2.36813
```

Compute the infinite sum:
$\frac{1}{1}+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots$

```
Sum[1/k^2, {k, 1, Infinity}]
\frac{\pi}{2}
```

Compute approximately (S1+S2)/P1, where

S1 is the sum of the first 10 primes numbers;
S2 is the sum of the first 20 numbers which are multiples of 10;
P 1 is the product of the square root of the first 10 even numbers;

```
S1 = Sum[Prime[k], {k, 1, 10}];
S2 = Sum[10. x, {x, 1, 20}];
P1 = Product[Sqrt[x], {x, 2, 20, 2}];
(S1 + S2) / P1
0.0365661
```

Where have you encountered the binomial coefficient
$C(\mathrm{n}, \mathrm{k})=\frac{n!}{k!(n-k)!}$?
(i) Use its definition to compute $\mathrm{C}(10,4)$.
(ii) The binomial coefficient can also be expressed as
$\left(\frac{n}{k}\right)\left(\frac{n-1}{k-1}\right)\left(\frac{n-2}{k-2}\right) \ldots\left(\frac{n-k+1}{1}\right)$
Use this representation to compute C(10,4) [hint: use "Product"]

It is the coefficient of the $x^{\wedge} k$ term in the polynomial expansion of the binomial power $(1+x)^{\wedge} n$.

```
(* Item (i) *)
(* one option *)
10!/ (4!\times6!)
(* another option *)
Nk! / (k! (Nk - k) !) /. {Nk -> 10, k -> 4}
(* yet another option *)
Clear[f1, Nk, k]
f1 = Nk! / (k! (Nk - k) !);
f1/. {Nk -> 10, k -> 4}
2 1 0
2 1 0
2 1 0
```

```
(* Item (ii) *)
(* one option *)
Product[(10-x) / (4-x), {x, 0, 3}]
(* another option *)
Nj = 10;
kj = 4;
Product[(Nj - x) / (kj - x), {x, 0, kj - 1}]
```

210
210

