Lesson 11

Monte Carlo methods

```
*) How to approximate the value of Pi.
We know that the area of a circle is Pi*R^2.
Pick a circle of radius R=1 and surround it with a square of side 1.
Select just quadrant where the possible values of }\textrm{x}\mathrm{ and }\textrm{y}\mathrm{ in the square can vary from 0 to 1.
Get various random numbers in this range for both }x\mathrm{ and }y\mathrm{ .
Use Pythagoras to find the hypotenuse of the respective triangles.
If this value is <= 1, it belongs to the 1/4 of the circle.
We sum all the points in this condition. The result is proportional to area of the 1/4 of the circle.
We have:
(Number of points in 1/4 of circle)/(Total number of points) = (area of 1/4 of circle)/(area of square)=(Pi*R^2/4)/R^2
```

```
Clear[shade, tot, sideX, sideY, hypo];
```

Clear[shade, tot, sideX, sideY, hypo];
shade = 0;
shade = 0;
tot = 10000;
tot = 10000;
Do [
Do [
sideX = RandomReal[];
sideX = RandomReal[];
sideY = RandomReal[];
sideY = RandomReal[];
hypo = Sqrt[sideX^2 + sideY^2];
hypo = Sqrt[sideX^2 + sideY^2];
If[hypo \leq 1., shade = shade + 1];
If[hypo \leq 1., shade = shade + 1];
, {k, 1, tot}];

```
    , {k, 1, tot}];
```

Print["From Monte Carlo we get Pi=", 4. shade / tot];
Print["The actual value is ", 1. Pi]
From Monte Carlo we get $\mathrm{Pi}=3.1572$
The actual value is 3.14159
*) Find 2000 values of Pi using the method above.
What is the average and the variance?
Show a histogram with the distribution of those values.

```
Clear[tot, Nrea];
Nrea = 2000;
tot = 10000;
Do[
    Clear[shade, sideX, sideY, hypo];
    shade = 0;
    Do[
        sideX = RandomReal[];
        sideY = RandomReal[];
        hypo = Sqrt[sideX^2 + sideY^2];
        If[hypo \leq 1., shade = shade + 1];
        , {k, 1, tot}];
    pip[kk] = 4. shade / tot;
    , {kk, 1,Nrea}];
```

```
Clear[la];
la = Table[pip[kk], {kk, 1, Nrea}];
Print["Average:"];
Sum[la\llbracketkk\rrbracket, {kk, 1, Nrea}] / Nrea
Print["Variance:"];
Sum[la\llbracketkk\rrbracket^2, {kk, 1, Nrea}] / Nrea - (Sum[la\llbracketkk\rrbracket, {kk, 1, Nrea}] / Nrea)^2
Histogram[la]
```

Average:
3.14164

Variance:
0.000276191

*) Birthday Problem.

We want to find out the probability that out of 30 people two share a birthday.

Person 1
Person 2: prob=364/365 of no overlap with the first;
Person 3: prob=363/365 of no overlap with 1 and 2;
Person 4: prob=362/365 of no overlap with 1, 2 and 3;

Person 30: prob=336/365 of no overlap with any person above;

The probability of having no shared birthdays is then $(364 / 365)^{*}(363 / 365)^{*}(362 / 365) \ldots(336 / 365)=$
Product[1. $\times(365-k) / 365,\{k, 1,29\}]$
0.293684

So the probability of having at least one pair of people having the same birthday is 71%.
Let us find this probability with the Monte Carlo Approach:

1) Pick 30 random numbers in the range [1.365].
2) Check to see if any of the thirty are equal.
3) Go back to step 1 and repeat 10000 times.
4) Report the fraction of trial that have matching birthdays.
```
Clear[trials, Npeople, matches];
trials = 10000;
Npeople = 30;
matches = 0;
Do [
    Clear[radlis];
    radlis = Table[RandomInteger[{1, 365}], {k, 1, Npeople}];
    Do[
        Do[
            If[radlis\llbracketk\rrbracket == radlis\llbracketk +j\rrbracket, {matches = matches + 1, Goto[end]}];
            , {j, 1, Npeople-k}];
        , {k, 1, Npeople-1}];
    Label[end];
    , {m, 1, trials}];
1. matches / trials
0.7032
*) Numerical integration.
```

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \sim \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x \\
\Delta x=(b-a) / n
\end{gathered}
$$

Different methods can be used to solve the integral above [see Lesson05 and Test 2]
MonteCarlo:
-) Select random numbers between a and b to compute $f(x)$
-) Compute the sum to approximate the integral

Solve the examples below exactly and with Monte Carlo:
(i) $\int_{0}^{1} x d x$
(ii) $\int_{0}^{2} x^{2} d x$
(iii) $\int_{0}^{\pi} \sin (x) d x$

```
Clear[Nt];
Nt = 10 000;
Print["Item (i)"]
Print["Exact:"];
Integrate[1.x, {x, 0, 1}]
Print["Monte Carlo:"];
Sum[RandomReal[], {k, 1, Nt}] (1. / Nt)
Print["Item (ii)"]
Print["Exact:"];
Integrate[1. x^2, {x, 0, 2}]
Print["Monte Carlo:"];
Sum[RandomReal[{0, 2}]^2, {k, 1,Nt}] (2./Nt)
Print["Item (iii)"]
Print["Exact:"];
Integrate[1. Sin[x], {x, 0, Pi}]
Print["Monte Carlo:"];
Sum[Sin[RandomReal[{0, Pi}]], {k, 1,Nt}] (Pi/Nt)
Item (i)
Exact:
0.5
Monte Carlo:
0.502353
```

Item (ii)
Exact:
2.66667

Monte Carlo:
2.67117

Item (iii)
Exact:
2.

Monte Carlo:
1.9979

