Lesson 06

We will now study how to use Mathematica to solve equations.

Nice site about solving polynomial equations:
http://oakroadsystems.com/math/polysol.htm

Solve: polynomial equations

*) Mathematica solves exactly any polynomial equation of degree less than 5

\[
\text{Solve}[[x^2 + 3 x - 5 == 0, x]]
\]

Clear[roots];
roots = x /. Solve[x^4 - 2 x^3 + x + 5 == 0, x]
roots[[1]]
2. roots[[3]]

\[
\text{Solve}[[x^5 - 2 x^3 + x + 5 == 0, x]]
\]

*) For polynomial equations of degree greater than 4, Mathematica can find approximate solutions

\[
\text{NSolve}[[x^5 - 2 x^3 + x + 5 == 0, x]]
\]

*) System of polynomial equations

Where does the line \(y = x + 2\) intersects the parabola \(y = 16 - x^2\)?

\[
\text{Plot}[\{x + 2, -x^2 + 16\}, \{x, -5, 4\}]
\]

\[
\text{Dynamic}[\text{MousePosition}[^\text{Graphics}\text{]}]
\]

\[
\text{NSolve}[\{y == x + 2, y == -x^2 + 16\}, \{x, y\}]
\]

*) System of linear equations
(linear equations are polynomial equations of degree one)

(i) The system has a unique solution
\[
\begin{align*}
2x+y+z &= 7 \\
x-4y+3z &= 2 \\
3x+2y+2z &= 13
\end{align*}
\]

\[
\text{Solve}[[2 x + y + z == 7, x - 4 y + 3 z == 2, 3 x + 2 y + 2 z == 13], \{x, y, z\}]
\]

Clear[A,b]
A = \{ \{2, 1, 1\}, \{1, -4, 3\}, \{3, 2, 2\}\};
b = \{7, 2, 13\};
\text{LinearSolve}[A,b]

How to solve it in a piece of paper

*) By the successive elimination of the unknowns (called Gaussian elimination)
Multiply the second equation by -2 and add it to the first. Multiply the second equation by -3 and add it to the third equation. We get
9y-5z=3
x-4y+3z=2
2y-z=1

-) Multiply the last equation by -5 and add it to the first
y=2

-) Go back to the last equation above and get
z=3

-) Plug y and z in any of the equation containing x and find
x=1

*) Matrix Inversion
Let us call X={x, y, z}
If A has an inverse then
A.X= b
can be written as
Inverse[A].A.X= Inverse[A].b
which gives
X = Inverse[A]. b

(ii) The system has infinite solutions
3x+2y-z+w=0
x-3z=-1
-y+w=2

Solve[{3 x + 2 y - z + w ==0, x - 3 z == -1, -y + w ==2}, {x,y,z}]

Clear[A,b]
A = {{3, 2, -1, 1}, {1, 0, -3, 0}, {0, -1, 0, 1}};
b = {0,-1,2};
LinearSolve[A,b]

(iii) The system has no solution
2x+y+z=7
x-4y+3z=2
3x-3y+4z=13

Solve[{2 x + y + z ==7, x - 4 y + 3 z ==2, 3 x - 3 y +4 z ==13}, {x, y, z}]

Clear[A,b]
A = {{2, 1, 1 }, {1, -4, 3}, {3, -3, 4}};
b = {7, 2, 13};
LinearSolve[A,b]

Det[A]

Iterative Methods
*) Jacobi Iteration
When can rewrite A in A.X=b as
A = (D + L + U)
leading to D.X = - (L+U).X + b,
where D is a diagonal matrix and L and U are, respectively, lower and upper triangular matrices with zeros on the diagonal.
This suggests the iteration
\[X_{i+1} = -D^{-1}(L+U)X_i + D^{-1}b \]
(This method as presented here is seldom used, because it is hard to determine if it converges and because the Gauss-Seidel method described below, which may converges even when Jacobi does not, converges faster.)

Example:
\[
\begin{align*}
4x - y &= 2 \\
-x + 4y - z &= 6 \\
-y + 4z &= 2
\end{align*}
\]

Clear[Diag,InDiag,LowM,UpM,BB,b,x,y,z];
Diag = { {4., 0, 0}, {0, 4, 0}, {0,0,4} };
InDiag = Inverse[Diag];
LowM = { {0,0,0}, {-1.,0,0}, {0,-1.,0} };
UpM = { {0,-1.,0}, {0,0,-1.}, {0,0,0} };
BB = - InDiag.(LowM + UpM);
b = {2.,6.,2.};

Print[“Solution:”];
LinearSolve[(Diag+LowM+UpM),b]
Print[];
Print[];
Print[“Solution by iterations: Jacobi iteration”];
{x,y,z} = {0.,0.,0.};
Do[
{x,y,z} = BB.{x,y,z} + InDiag.b;
Print[“iteration “, k];
Print[{x,y,z}];
Print[];
,{k,1,10}];

*) Gauss-Seidel Method

Here we use
\[X_{i+1} = -(D + L)^{-1}.U.X_i + (D + L)^{-1}b \]

Clear[Diag,LowM,InDL,UpM,b,x,y,z];
Diag = { {4., 0, 0}, {0, 4, 0}, {0,0,4} };
LowM = { {0,0,0}, {-1.,0,0}, {0,-1.,0} };
InDL = Inverse[Diag + LowM];
UpM = { {0,-1.,0}, {0,0,-1.}, {0,0,0} };
b = {2.,6.,2.};

Print[“Solution by iterations: Gauss-Seidel Method”];
{x,y,z} = {0.,0.,0.};
Do[
{x,y,z} = - InDL.UpM.{x,y,z} + InDL.b;
Print[“iteration “, k];
Print[{x,y,z}];
}
Print[];
;
\{k,1,10\}];

Transcendental equations

(Equations involving exponential, logarithmic, and trigonometric functions can only occasionally be solved with Solve or NSolve, most commonly we need FindRoot)

Clear[x];
Solve[x^2 == Exp[x], x]
NSolve[x^2 == Exp[x], x]
FindRoot[x^2 == Exp[x], \{x, 1.\}]

Where do the functions Sin[x] and x^2-1 cross?
A graph of the function helps selecting an initial guess
To find where they meet:
Plot[{Sin[x], x^2-1}, \{x, -Pi, Pi\}]
(Or the root of the function: Plot[Sin[x] - x^2 + 1, \{x, -Pi, Pi\}])
The two functions intersect near x= -1 and x=1
FindRoot[Sin[x] == x^2 - 1, \{x, -1\}]
FindRoot[Sin[x] == x^2 - 1, \{x, 1\}]

FindRoot[Exp[2 x] -2 Exp[x] + 1 ==0, \{x,90\}]
FindRoot[Exp[2 x] -2 Exp[x] + 1 ==0, \{x,90\}, MaxIterations -> 300]

*)

(i) FindRoot[lhs == rhs, \{x, xo\}] solves the equation lhs=rhs using Newton’s method with starting value xo. Newton’s method fails if the derivative of the function cannot be computed.

(ii) FindRoot[lhs == rhs, \{x, xo,x1\}] solves the equation lhs=rhs using (a variation of) the secant method with starting values xo and x1.

The secant method is a bit slower.

FindRoot[Exp[-x] == x, \{x, 1\}]
FindRoot[Exp[-x] == x, \{x, 1, 2\}]

*) System of equations
FindRoot[\{ Exp[x] + Log[y] == 2, Sin[x] + Cos[y] ==1 \}, \{x, 1\}, \{y,1\}]