Lesson 06

We will now study how to use Mathematica to solve equations.

Nice site about solving polynomial equations:
http://oakroadsystems.com/math/polysol.htm

Solve: polynomial equations

*) Mathematica solves exactly any polynomial equation of degree less than 5
Solve $\left[x^{\wedge} 2+3 x-5==0, x\right]$
Clear[roots];
roots $=x /$. Solve $\left[x^{\wedge} 4-2 x^{\wedge} 3+x+5==0, x\right]$
roots[[1]]
2. roots[[3]]

Solve $\left[x^{\wedge} 5-2 x^{\wedge} 3+x+5==0, x\right]$
*) For polynomial equations of degree greater than 4, Mathematica can find approximate solutions
NSolve $\left[x^{\wedge} 5-2 x^{\wedge} 3+x+5==0, x\right]$
Solve[$\left.x^{\wedge} 5-2 x^{\wedge} 3+x+5 .==0, x\right]$

*) System of polynomial equations

Where does the line $y=x+2$ intersects the parabola $y=16-x^{\wedge} 2$?
Plot[$\left.\left\{x+2,-x^{\wedge} 2+16\right\},\{x,-5,4\}\right]$
Dynamic[MousePosition["Graphics"]]
NSolve[$\left.\left\{y==x+2, y==-x^{\wedge} 2+16\right\},\{x, y\}\right]$
*) System of linear equations
(linear equations are polynomial equations of degree one)
(i) The system has a unique solution
$2 x+y+z=7$
$x-4 y+3 z=2$
$3 x+2 y+2 z=13$

Solve[\{2 $x+y+z==7, x-4 y+3 z==2,3 x+2 y+2 z==13\},\{x, y, z\}]$
Clear[A,b]
$A=\{\{2,1,1\},\{1,-4,3\},\{3,2,2\}\} ;$
b $=\{7,2,13\}$;
LinearSolve[A,b]
How to solve it in a piece of paper
*) By the successive elimination of the unknowns (called Gaussian elimination)

```
-) Multiply the second equation by -2 and add it to the first. Multiply the second equation by -3 and add it to the third
equation. We get
9y-5z=3
x-4y+3z=2
2y-z=1
-) Multiply the last equation by -5 and add it to the first
y=2
-) Go back to the last equation above and get
z=3
-) Plug y and z in any of the equation containing x and find
x=1
*) Matrix Inversion
Let us call }X={x,y,z
If }A\mathrm{ has an inverse then
A. X=b
can be written as
Inverse[A].A.X= Inverse[A].b
which gives
X = Inverse[A]. b
(ii) The system has infinite solutions
3x+2y-z+w=0
x-3z=-1
-y+w=2
Solve[{3x+2y-z+w==0,x-3z== -1, -y +w==2}, {x,y,z}]
Clear[A,b]
A = {{3,2,-1, 1},{1, 0, -3,0}, {0,-1, 0, 1}};
b = {0,-1,2};
LinearSolve[A,b]
(iii) The system has no solution
2x+y+z=7
x-4y+3z=2
3x-3y+4z=13
Solve[{2 x + y + z ==7, x-4y+3z==2, 3x-3y+4z==13},{x,y,z}]
Clear[A,b]
A = {{2, 1, 1},{1,-4,3},{3,-3,4}};
b = {7, 2, 13};
LinearSolve[A,b]
Det[A]
```

Iterative Methods
*) Jacobi Iteration
When can rewrite A in $A . X=b$ as
$A=(D+L+U)$
leading to $D \cdot X=-(L+U) \cdot X+b$,
where D is a diagonal matrix and L and U are, respectively, lower and upper triangular matrices with zeros on the diagonal.

This suggests the iteration
$X_{i+1}=-D^{-1}(\mathrm{~L}+\mathrm{U}) \cdot X_{i}+D^{-1} . b$
[This method as presented here is seldom used, because it is hard to determine if it converges and because the
Gauss-Seidel method described below, which may converges even when Jacobi does not, converges faster.]
Example:
$4 x-y=2$
$-x+4 y-z=6$
$-y+4 z=2$

Clear[Diag,InDiag,LowM,UpM,BB,b,x,y,z];
Diag $=\{\{4 ., 0,0\},\{0,4,0\},\{0,0,4\}\} ;$
InDiag $=$ Inverse[Diag];
$\operatorname{LowM}=\{\{0,0,0\},\{-1 ., 0,0\},\{0,-1 ., 0\}\} ;$
$\mathrm{UpM}=\{\{0,-1 ., 0\},\{0,0,-1\},.\{0,0,0\}\} ;$
BB = - InDiag.(LowM + UpM);
b = \{2.,6.,2.\};

Print["Solution:"];
LinearSolve[(Diag+LowM+UpM),b]
Print[];
Print[];

Print["Solution by iterations: Jacobi iteration"];
$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=\{0 ., 0 ., 0$.$\} ;$
Do[
$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=$ BB. $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}+$ InDiag.b;
Print["iteration ", k];
$\operatorname{Print}[\{x, y, z\}]$;
Print[];
,\{k,1,10\}];
*) Gauss-Seidel Method
Here we use
$X_{i+1}=-(D+L)^{-1} \cdot \mathrm{U} \cdot X_{i}+(D+L)^{-1} \cdot b$

Clear[Diag,LowM,InDL,UpM,b,x,y,z];
Diag $=\{\{4 ., 0,0\},\{0,4,0\},\{0,0,4\}\} ;$
$\operatorname{LowM}=\{\{0,0,0\},\{-1 ., 0,0\},\{0,-1 ., 0\}\} ;$
InDL $=$ Inverse[Diag + LowM];
$\mathrm{UpM}=\{\{0,-1 ., 0\},\{0,0,-1\},.\{0,0,0\}\} ;$
b = \{2.,6.,2.\};

Print["Solution by iterations: Gauss-Seidel Method"];
$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=\{0 ., 0 ., 0$.$\} ;$
Do[
$\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}=-\mathrm{InDL} . \mathrm{UpM} .\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}+\operatorname{InDL} . \mathrm{b} ;$
Print["iteration ", k];
$\operatorname{Print}[\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}]$;

Print[];
, $\{\mathrm{k}, 1,10\}]$;

Transcendental equations

(Equations involving exponential, logarithmic, and trigonometric functions can only occasionally be solved with Solve or NSolve, most commonly we need FindRoot)

Clear[x];
Solve[$x^{\wedge} 2==\operatorname{Exp}[x], x$]
NSolve[$\left.x^{\wedge} 2==\operatorname{Exp}[x], x\right]$
FindRoot[$\left.x^{\wedge} 2==\operatorname{Exp}[x],\{x, 1\}.\right]$
Where do the functions $\operatorname{Sin}[x]$ and $x^{\wedge} 2-1$ cross?
A graph of the function helps selecting an initial guess
To find where they meet:
$\operatorname{Plot}\left[\left\{\operatorname{Sin}[x], x^{\wedge} 2-1\right\},\{x,-\operatorname{Pi}, \operatorname{Pi}\}\right] \quad$ (Or the root of the function: Plot[$\left.\operatorname{Sin}[x]-x^{\wedge} 2+1,\{x,-P i, P i\}\right]$)
The two functions intersect near $x=-1$ and $x=1$
FindRoot $\left[\operatorname{Sin}[x]==x^{\wedge} 2-1,\{x,-1\}\right]$
FindRoot $\left[\operatorname{Sin}[x]==x^{\wedge} 2-1,\{x, 1\}\right]$
FindRoot[Exp[2 x]-2 $\operatorname{Exp}[x]+1==0,\{x, 90\}]$
FindRoot[Exp[2 x] -2 Exp[x] $+1==0,\{x, 90\}$, MaxIterations -> 300]
*)
(i) FindRoot[Ihs == rhs, $\{x, x 0\}$] solves the equation Ihs=rhs using Newton's method with starting value xo. Newton's method fails if the derivative of the function cannot be computed.
(ii) FindRoot[Ihs == rhs, $\{x, x 0, x 1\}]$ solves the equation lhs=rhs using (a variation of) the secant method with starting values xo and $x 1$.

The secant method is a bit slower.
FindRoot[$\operatorname{Exp}[-x]==x,\{x, 1\}]$
FindRoot[$\operatorname{Exp}[-x]==x,\{x, 1,2\}]$
*) System of equations
FindRoot[$\{\operatorname{Exp}[x]+\log [y]==2, \operatorname{Sin}[x]+\operatorname{Cos}[y]==1\},\{x, 1\},\{y, 1\}]$

