Assignment 10

QUESTION

Use N=1000 and show 3 snapshots of a 2D Random Walk

QUESTION

Simulate 1000 random walks in a plane, each walk having 25 steps (steps having equal lengths $=1$). Let each walk start at $(0,0)$ and each step be in a random direction. Compute the average distance from (0,0) after 4, 9, 16 and 25 steps.

QUESTION

Using the Gaussian distribution

$$
\mathrm{P}(\mathrm{x})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right),
$$

verify that
(a) it is normalized;
(b) $<x>=\mu$
(c) variance $=\sigma^{2}$
[Hints: Assume Re[s^2]>0; Use PowerExpand]

QUESTION

Using derivatives, verify that

$$
\rho(x, t)=\frac{1}{\sqrt{4 \pi \mathrm{Dt}}} \exp \left(\frac{-\mathrm{x}^{2}}{4 \mathrm{Dt}}\right)
$$

is a solution of the diffusion equation

$$
\frac{\partial \rho}{\partial t}=D \frac{\partial^{2} \rho}{\partial x^{2}}
$$

QUESTION

A normal (Gaussian) distribution corresponds to a distribution of random numbers such that its mean is μ and the standard deviation is σ.

A way to generate random numbers that satisfy such distribution is by writing: RandomReal[NormalDistribution [$\mu, \sigma]$].
(i) Generate a list with 2000 random numbers from a Gaussian distribution with $\mu=0$ and $\sigma=1$. Make a histogram with this list using a command from Mathematica.
(ii) With the same list above, make a histogram using only do-loops. Use three different bin sizes $=0.5,0.2$, and 0.1 .
(iii) For the bin size=0.2, normalize the histogram so that the area underneath is 1.

Use the data corresponding to the middle point of the bins and fit it with a Gaussian. What do you get for $\langle x>$ and the variance?
What is the relative error between your fit and $\sigma=1$?
Plot both curves together: the normalized histogram and the Gaussian fit.

