Assignment 08

Solve the differential equation $\frac{d y}{d x}=x y$ with initial condition $y(1)=2$ and graph the solution for $-2<=x<=2$.

According to Newton's law of cooling, the temperature of an object changes at a rate proportional to the difference in temperature between the object and the outside medium. If an object whose temperature is $70^{\circ} \mathrm{F}$ is placed in a medium whose temperature is $20^{\circ} \mathrm{F}$, and is found to be $40^{\circ} \mathrm{F}$ after 3 minutes, what will its temperature be after 6 minutes?

Do not worry if Mathematica complains when you try to find the constant of the equation.

A baseball is hit with velocity of $100 \mathrm{ft} / \mathrm{s}$ at an angle of 30° with the horizontal. The height of the bat is 3 ft above the ground. Neglecting air and wind resistance,
(a) will it clear a 35 -ft-high fence located 200 ft from home plate?
(b) Make a plot of the trajectory of the baseball. Label the axes.
[Hint: use parametric plot]
(Assume $\mathrm{g}=32.16 \mathrm{ft} / \mathrm{s}^{\wedge} 2$)

At what angle should the ball in the previous problem be hit so that it goes over the fence? Give you answer in degrees not radians.
Do not worry about complaints of Mathematica about the existence of more solutions. Every angle added by 2 Pi is also a solution, this is why it complains. Discard negative angles.

The equation governing the amount of current I, flowing through a simple resistance-inductance circuit when an EMF (voltage) is applied is
$L \frac{d l}{d t}+R I=E$. The units for E, I, and L are respectively volts, amperes, and henries. If $\mathrm{R}=10$ ohms, $\mathrm{L}=1$ henry, the EMF source is an alternating voltage whose eqaution is $\mathrm{E}(\mathrm{t})=10 \sin (5 \mathrm{t})$, and the current is initially 4 amperes, find an expression for the current at time t and plot the graph of the current for the first 3 seconds.

If a spring with mass m attached at one end is suspended from its other end, it will come to rest in an equilibrium position. If the systems is then perturbed by releasing the mass with an initial velocity of vo at a distance yo below its equilibrium position, its motion satisfies the differential equation
$m \frac{d^{2} y}{d t^{2}}+a \frac{d y}{d t}+k y=0$,
$y^{\prime}(0)=v o$,
$y(0)=y o$.
Above, "a" is the damping constant (determined experimentally) due to friction and air resistance, and k is the spring constant given in Hooke's law.

A mass of $1 / 4$ slug is attached to a spring with a spring constant $k=6 \mathrm{lb} / \mathrm{ft}$. The mass is pulled downward from its equilibrium position 1 ft (that is, yo=-1) and then released. Assuming a damping constant $a=1 / 2$, determine the motion of the mass and sketch its graph for the first 5 seconds.

The logistic equation for population growth $\frac{d p}{d t}=a p-b p^{2}$
was discovered in the mid-nineteenth century by the biologist Pierre Verhulst. The constant "b" is generally small in comparison to "a" so that for small population size p, the quadratic term in p will be negligible and the population will grow approximately exponentially. For large p, however, the quadratic term serves to slow down the rate of the growth of the population.
a) Solve the logistic equation for general values of the constants a, b, and initial population po. [Do not worry if Mathematica says that more solutions could not be found]
b) Sketch the solution for $\mathrm{a}=2, \mathrm{~b}=0.05$ and an initial population $\mathrm{po}=10$. [Range of t from 0 to 5].
c) Determine the limiting value of the population at t-> infinity.

Plot the solution to the differential equation
$\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}+1\right)^{\wedge} 2 \frac{d y}{d t}+y=0$
$y(0)=1$
$y^{\prime}(0)=0$
for $0<=\mathrm{t}<=10$

