Assignment 05

(1) Find the limit of $\frac{\sin x^{2}}{x}$ as $x->0$
(2) Find the derivative of
(i) $y(x)=\sin \left(e^{x^{2}}\right)$
(ii) $y(x)=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$ [Use Simplify[...] to get the answer in a nice shape]
(iii) $y(x)=x \operatorname{arcsinh}(x / 3)-\sqrt{9+x^{2}}$
(iv) The second derivative of $y(x)=e^{x} \sin x$
(v) The partial derivative with respect to x of $f=\frac{\sin (x y)}{\cos (x+y)}$
(vi) Find $\frac{\partial^{3} u}{\partial y^{2} \partial x}$ given $u=\ln \left(x^{2}+y\right)$
(3) Maxima and minima

The function $f(x)=x+\sin (5 x)$ has three relative maxima and two relative minima in the interval [0,Pi].
(i) Plot the function to get an idea of their locations.
(ii) Find them.
(4) Suppose $f(x)=-x^{\wedge} 3+x+1$.
(i) Find $f^{\prime}(x)$ using a single command from Mathematica.
(ii) Find $\mathrm{f}^{\prime}(\mathrm{x})$ using the command "Limit" from Mathematica.
(iii) Find $f^{\prime}(1)$ using item (i) and compare it with results from the definition of derivative obtained with a do-loop. In this case, use increments h to x , which vary as $0.1,0.01, \ldots 0.000001$
(iv) Determine the equation of the line tangent to the graph of $f(x)$ at the point (1,f(1)).
[Hint: the equation of the tangent line to a curve at xo is $\mathrm{f}(\mathrm{xo})+\mathrm{f}^{\prime}(\mathrm{xo})(\mathrm{x}-\mathrm{xo})$]
(v) Plot both $\mathrm{f}(\mathrm{x})$ and the tangent line in the interval $[-1.5,2]$.
(5) Repeat the last exercise item above, but embed it all within "Manipulate" so that the point of tangency between the line and the cubic function goes continuosuly from $x=-1.5$ to $x=2.0$
(6) Repeat the exercise above, but now with Animate and this time for the function: $f(x)=x^{\star} \sin \left(x^{\wedge} 2\right)+1$
[This is the same function used in wikipedia to illustrate the notion of derivate: http://en.wikipedia.org/wiki/Derivative].
The plot range should be $\{-2,4\}$ for x and also for y, whereas the function and the tangent should appear just for x from -1 to 3 .
(7)
(i) Find the Taylor expansion of $e^{\sin (u)}$ about $u=0$ to order u^{7}
(ii) Convert the power series above to an ordinary expression (that is use Normal[...])
(iii) Find the Taylor expansion of $\left(1+x^{4}\right)^{1 / 3}$ about $\mathrm{x}=0$ up to order x^{4}, x^{8}, and x^{24} and integrate each result for $\{\mathrm{x}, 0,1\}$
(iv) Find the integral
$\int_{0}^{1}\left(1+x^{4}\right)^{1 / 3} d x$
and compare with the results from item (iii)
(8)
(i) Evaluate $\int_{0}^{1} \frac{4}{1+x^{2}} d x$
(ii) Evaluate the integral and then differentiate the result to recover the integrand
[you may need to use Simplify[...]]
$\int \frac{x}{a^{3}+x^{3}} d x$
(iii) $\int \frac{2 x^{2}-x+4}{x^{3}+4 x} d x$
(iv) Assuming that the constant a is both real and positive, evaluate the integral
$\int_{-\infty}^{\infty} x^{2} e^{-2 a x^{2}} d x$
(v) Assuming that $a>0$ and $m \geq 0$, evaluate
$\int_{0}^{\infty} \frac{\cos ^{2}(m x)}{a^{2}+x^{2}} d x$
(9) Integrate the two functions below:
$f 1=x^{\wedge} 5 \operatorname{Sin}[2 x]+x . / 3$ in the interval $[2.5,7]$
$\mathrm{f} 2=\mathrm{x}^{\wedge} 5 \operatorname{Exp}[\operatorname{Sin}[2 x]]+x . / 3$ in the interval $[2.5,7]$
(i) Using a single command from Mathematica
(ii) Using a sum of small areas, as we did in class.
(iii) Using a sum of small areas, as we did in class, but avoid the commad "Sum" and instead use a do-loop.
[In (ii) and (iii), use a bin size that gives results very close to the integral done with Mathematica]

