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1. Introduction 

Everything in nature is made of many microscopic particles, which interact with one 

another. A single atom may have certain properties, but once several atoms are put together 

so that they can interact, they may behave differently. Quantum systems with many 

interacting particles are known as quantum many-body systems, and such systems are the 

subject of this thesis. Understanding the consequences of these interactions can have 

significant applications in various areas. A quantum computer, which is a quantum many-

body system, is a computer design that uses the principles of quantum mechanics to increase 

the computational power of computers. Another application is understanding heat transfer at 

the fundamental level, which is particularly important in an age in which the rate of 

technological advancements is rapidly increasing and mitigation of local heating in electronic 

devices is an increasingly significant goal.  

In classical physics we have tools that allow us to describe the static properties and 

predict the dynamics of a system. Using Newton’s Laws we have a firm understanding of the 

interplay between forces, and we can understand how an object’s position, velocity, or 

acceleration may change. These laws are very versatile and correctly describe the behavior of 

macroscopic objects such as planes, cars, and people. However, many laws of classical 

physics do not correctly predict the behavior of tiny objects, such as electrons. In order to 

describe the dynamics of objects that are microscopic in size we must use quantum 

mechanics, which is an intrinsically probabilistic theory [1]. 

A wave function Ψ(x,t) is a function of space and time that describes the wave 

characteristics of a particle or a group of particles1. De Broglie hypothesized that like light, 

                                                
1 This is the wave function in one-dimension. Ψ(r,t) is the complete wave function. 
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matter (electrons, protons, etc.) has characteristics of both particles and waves, and this 

hypothesis was eventually confirmed experimentally. The Heisenberg uncertainly principle 

states that one cannot precisely know both the location and the momentum of a particle at the 

same time. The quantity   

|!(!, !)|! = ! !, ! ∗!(!, !) 

corresponds to the probability of finding the particle at point x at time t if a measurement is 

done on the system. While Newton’s Laws in classical physics can predict the position and 

velocity of macroscopic objects at a future time, in quantum mechanics the Schrödinger 

equation governs the probability amplitude, meaning the behavior of the wave function 

Ψ(x,t). Given initial conditions Ψ(x,0), the Schrödinger equation can determine Ψ(x,t) for all 

future time. [1, 2] 

We use models to describe real systems in nature. When the model can be 

analytically solved, it is called integrable. In contrast, in classical physics chaotic systems are 

unpredictable in the long run. Such systems are extremely sensitive to the initial conditions. 

The trajectories in phase space of two particles with very close initial conditions diverge in 

time. We can find approximate numerical solutions to them, but we are unable to describe 

them in the long term. Most systems found in nature are in fact chaotic. Examples include 

weather, population growth, and the spread of diseases [3].  

While on the quantum level it does not make sense to talk about precise trajectories 

because of the uncertainty principle, some properties of the spectrum of the system indicate 

whether or not it would be chaotic in the classical domain. Quantum systems showing such 

signatures of chaos are then referred to as chaotic quantum systems[4]. 
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 In this thesis we analyze a model for quantum many body systems known as 

Heisenberg spin-1/2 systems. Such systems closely model some magnetic compounds such 

as copper oxides. Some of these real systems have been shown to have a great ability to 

transport heat, making them very interesting to study [5]. The Heisenberg model is also used 

as a model for quantum computers in studies of transfer of information in a controllable way.  

We begin our studies with an integrable, non-chaotic, system. The static and dynamic 

properties of this system are studied, and we look at conditions that allow for the excitations 

in the system to easily move, like in a conductor, and factors that limit their spreading, 

meaning that the system behaves more like an insulator. We then change the parameters of 

the model to render it a chaotic system and examine the effects of such changes. Finally, we 

attach the system to baths of different temperatures in an attempt to understand whether or 

not the transfer of heat in integrable systems differs from the transfer of heat in chaotic 

systems. 

 

2. Spin System 

 

2.1 Spin 

 Electrons, like other elementary and composite particle, possess an intrinsic property 

that is referred to as spin. In order to explain this, we can draw a comparison between the 

movement of electrons and the movement of planets. A planet has an orbital angular moment 

due to the fact that it orbits around the sun, where one orbit takes approximately 365 days, 

and it has an angular momentum due to the fact that it orbits around its own axis, which 

causes us to have approximately 24 hours in a day. Electrons orbit around the nucleus of the 
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atom, thus possessing an orbital angular momentum. There is an additional “angular 

momentum” that the electron has, one that could be thought of as having to do with the 

rotation of an electron around its own axis like the planet, but in fact it is only an intrinsic 

property and not actually a physical property of electrons. If this angular momentum were to 

be attributed to the rotation of the electron, the electron would have to be spinning faster than 

the speed of light, which is not possible. Therefore, this angular momentum, or spin, is 

simply an inherent property of the electron. The orbital (spin) angular momentum is 

associated with the orbital (spin) magnetic dipole moment of the particle. [1, 6] 

In 1921-22 Otto Stern and Walther Gerlach ran a series of experiments that gave great 

insight into the behavior of these spins. The experiment began by heating up silver atoms. 

Silver atoms contain 47 electrons. 46 of these electrons can be thought of as creating a 

symmetrical electron cloud that has no net angular momentum. This leaves one electron with 

a spin that is not counteracted by any other electron, thus giving the atom as a whole a spin.  

These silver atoms are sent through a magnetic field created by shaped magnets and 

reach a detector at the other end. This magnetic field is non-uniform, and increases in the 

positive z-direction. It is expected that the atoms will be deflected as they go through the 

beam depending on the magnitude and direction of each atom’s magnetic moment. This setup 

is meant to show the z-component of the electron spin because the amount by which each 

atom is deflected is proportional to the magnitude of the dipole in the z-direction. The atoms 

are randomly oriented in the oven, and therefore classically we would expect the alignment 

of the magnetic moments, or the values of the spins, to be a continuous distribution and 

appear that way on the detector, each being deflected by the magnetic field differently based 

on their orientation. However, what they found was that the magnetic field seemed to split 
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the original beam from the oven into two distinct components. This suggests that there are 

only two different values of the z-component of the magnetic moment, and thus there are 

only two possible orientations for the spin – up or down. This phenomenon is known as the 

quantization of the electron spin angular momentum. This occurrence is not only true for the 

z-direction, but the same phenomenon of the splitting of the beam into two distinct beams 

was seen, for example, when the magnetic field was non-uniform and increasing in the 

positive x-direction.  

The results became more surprising when Stern and Gerlach placed multiple 

magnetic fields in a row and sent the beam through the magnetic fields to a detector at the 

other end. For example, they sent the beam of silver atoms from the oven through a non-

uniform magnetic field in the z-direction, and blocked the beam of atoms oriented in the –z 

direction. They allowed the other beam, composed of atoms oriented in the +z direction, to 

go through a non-uniform magnetic field in the x-direction, and blocked those atoms oriented 

in the –x direction. They then allowed the +x beam to go through another non-uniform 

magnetic field in the z-direction. We may have expected that since we previously blocked the 

–z beam from continuing, we would only see one beam at the detector at this point, namely 

those electrons with +z orientation. However, what they found was that two distinct beams 

emerged, one corresponding to +z and one to –z.  This example illustrates that in quantum 

mechanics we cannot determine both the z-spin and the x-spin simultaneously; once we 

select one beam by sending it through a non-uniform magnetic field, we destroy any previous 

information about the spin in another direction. This is a characteristic of quantum 

mechanics, and not a flaw in the design of the experiment [7]. 
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2.2 Spin-1/2 Chain 

The system being studied is a one-dimensional system (chain) of many interacting 

spin-1/2 particles described by the Heisenberg model. Each site on the chain, numbered 1 

through L, contains one spin-1/2 particle. When a static magnetic field acts on spin-1/2 

particles and the interaction among them is negligible, these particles each point either 

parallel or antiparallel to the direction of the magnetic field, as was seen in the Stern-Gerlach 

experiment. In our case a magnetic field in the z-direction is applied to the system, so we 

refer to the two possible orientations of the spin as pointing down or up.  

We study systems with open boundary conditions as well as systems with periodic 

boundary conditions. For open boundary conditions, the first site and the last site are not 

linked. When the first and last site can communicate and the sites form a ring, this is referred 

to as a closed chain with periodic boundary conditions. 

Particles having a net spin-1/2 include protons, neutrons, electrons, neutrinos, and 

quarks. An up-spin can be denoted by !  = 1    =
1
0
!

"
#
$

%
& .   Similarly, a down-spin can be 

denoted by !    = 0    =
0
1
!

"
#
$

%
& .  The vector form is useful for when applying a spin operator, 

such as the Pauli matrices, to the spin. 
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3. Static Properties of the System 

 

3.1 Hamiltonian  

The Hamiltonian is an operator that describes the energy of the system. We are 

working with the Heisenberg spin-1/2 model, where the Hamiltonian is given by  

                   ! = !∆!!!!!!!! + ! !!!!!!!! + !!
!!!!!

!!!!
!!! ,       (1) 

 where 

!!,!,! = ℏ
!!,!,!

2  

are spin operators, and  

!! = 0 1
1 0  ,   !! = 0 −!

! 0  ,   !! = 1 0
0 −1  

are the Pauli spin matrices. In our work we set ℏ equal to 1.  

To better understand how these spin operators work we will show some examples: 

When the !! spin operator is applied to a spin, it flips the orientation of that spin.  

!! 1    =    0 1
1 0

1
0 =    01 = 0  

!! 0    =    0 1
1 0

0
1 =    10 = 1  

Similarly, when the !!  operator is applied to the spin, it flips the orientation of that spin, but 

there is an additional coefficient depending on the orientation of the original spin.  

!! 1    =    0 −!
! 0

1
0 = !   01 = ! 0  

!! 0    =    0 −!
! 0

0
1 = −!   10 = −! 1  

The !!  operator maintains the orientation of the spin, but there is a coefficient of +1 if the 

spin is oriented up and a coefficient of -1 if the spin is oriented down. 
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!! 1 =    1 0
0 −1

1
0 = 1

0 = 1   

!! 0 =    1 0
0 −1

0
1 = − 0

1 = − 0  

For this reason we refer to an up-spin as the excitation. 

The two coupling terms involved in this Hamiltonian are the Ising interaction and the 

flip-flop term. We first focus on cases with only nearest neighbor coupling, meaning that 

each spin interacts only with the spins that are directly next to it. Under open boundary 

conditions, most of the sites on the chain interact with two different sites, one on each side, 

while the two sites on the edges of the chain only interact with one site each. This will be 

significant in later discussions of border effects. 

J is the strength of the flip-flop term, !!!!!!!! + !!
!!!!!

! , and J∆ is the strength of the 

Ising interaction, !!!!!!!! . In our analysis, J, which sets the energy of the system, is chosen to 

be 1. The ratio of the strength of the Ising interaction to the strength of the flip-flop term is 

the anisotropy parameter, Δ. When ∆ is equal to1 and the strength of the two terms is equal it 

is an isotropic model, known as the XXX model. We are working with the anisotropic XXZ 

model, where ∆ is not equal to 1. When Δ is very large the Ising interaction dominates the 

Hamiltonian, and when Δ is very small, the flip-flop term dominates the Hamiltonian. When 

the value of Δ is varied, there are significant effects on the dynamics of the system, as we 

will see later on.  

When there is only nearest neighbor coupling, the value of the Ising interaction term 

depends on the orientation of one spin in relation to its neighboring spin. Two adjacent spins 

that are oriented in the same direction have an energy of J∆/4. If the two adjacent spins are 

oriented in opposite directions, they have an energy of -J∆/4. Therefore, if J∆ is positive, the 
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state with lowest energy (ground state) is the one with the most antiparallel pairs, known as 

an antiferromagnetic configuration.  

The flip-flop term takes adjacent spins that are antiparallel and flips the orientation of 

both of the spins. The flip-flop term is like the kinetic energy of the system, moving the 

excitation along the chain. 

It is significant to note that neither of the terms included in the Hamiltonian create or 

remove excitations from the system. If the system begins with a certain number of 

excitations, that number will be fixed throughout the evolution of the system. In other words, 

there is a conservation of total spin in the z-direction.   

 

3.2 Hamiltonian in the Form of a Matrix  

To represent that Hamiltonian in the form of a matrix, we need to choose a basis in 

which to create the matrix. The entire Hamiltonian matrix, with dimension 2L, can be split 

into blocks called subspaces, with each subspace corresponding to configurations containing 

the same number of up-spins. The states from one subspace do not interact with states from 

another subspace, and therefore we were able to create a matrix of one subspace at a time. In 

order to create these matrices we consider what is called the site-basis. To create this basis, 

we determine how many sites our chain will have and how many excitations there will be. As 

was previously mentioned, the Hamiltonian conserves the number of excitations, and 

therefore that number will remain constant assuming no new magnetic fields or sources of 

energy are introduced. Once we know the number of sites and the number of excitations, we 

find the total number of possible distinct configurations of these up-spins and down-spins 

along the chain, keeping in mind that all up-spins are identical to one another and all down-
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spins are identical to one another.  The total number of distinct permutations possible is equal 

to !!
!! (!!!)!

, where N is the number of excitations in the system. This can be written in 

shorter form using the binomial coefficient 
L
N
!

"
#

$

%
& . This value is also the dimension of our 

matrix. Based on the various configurations of the spins along the chain we can create the 

basis used for the Hamiltonian matrix, the site-basis.  

For example, in a case where there are 4 sites and 2 excitations, there are six possible 

distinct configurations. These six configurations are: 

1100 , 1010 , 1001 , 0110 , 0101 , 0011 .             (2) 

These configurations can also be represented as vectors, with (100000) representing the first 

configuration, (010000) representing the second, and so on, with these vectors making up the 

basis for our matrix. Because there are six distinct configurations, our matrix would have a 

dimension of 6, with 6 rows and 6 columns. 

Using this site-basis we can fill in the elements of the matrix. The Ising term fills in 

values for the diagonal elements of the matrix, and the flip flop term fills in the off-diagonal 

elements. For the Ising term, to compute the value of the element H11 in the matrix for a 

closed system with 4 sites and 2 up-spins we look at how many pairs of parallel spins and 

how many pairs of antiparallel spins there are in the associated configuration of the spins. We 

will look at the first configuration 1100 , since that is the configuration corresponding to 

element H11 of the matrix. For 1100 , the spins in sites 1 and 2 are parallel, so we add J∆/4. 

The spins in sites 2 and 3 are antiparallel so J∆/4 is subtracted. The spins in sites 3 and 4 are 

parallel, adding another J∆/4. Finally, since it is a closed chain the first and last sites must be 

compared, and since those spins are antiparallel to one another, an additional J∆/4 is 



 12 

subtracted. Therefore, element H11 of the matrix is !∆
!
− !∆

!
+ !∆

!
− !∆

!
= 0     . The same 

calculations are done for elements H22, H33…, H66.  

If this were an open chain as opposed to a closed chain we would not compare the 

first and last sites. Element H11 of the Hamiltonian matrix for the open chain would be 

!∆
!
− !∆

!
+ !∆

!
=    !∆

!
 .   This is an example of how the geometry of the system would change the 

spectrum. Another difference between closed and open chains is that closed chains are 

translationally invariant. This means that translating the sites does not change the energy; 

1000  has the same energy as 0100  which is not the case with an open chain.  

The calculation of the flip-flop term is slightly more complicated. When two states 

can couple, the corresponding elements in the matrix will contain J/2. In order to see if two 

states can couple, we must compare the two states site by site. With nearest neighbor 

coupling, if the orientation of the spins differ in only two sites, and the two sites are next to 

each other, then the states are directly coupled. For example, when comparing the first two 

states, 1100  and 1010 , we see that site 1 of each of the states has an up-spin, and site 4 of 

each of the states has a down-spin. Additionally, we see that the states differ when it comes 

to the orientation of the spins in sites 2 and 3. Since there are two sites in which they differ, 

and these two sites are next to each other, this is a case of nearest neighbor coupling. Given 

that 1100  is the first basis vector and 1010  is the second basis vector, the elements H12 

and H21 will have a value of J/2. The same process is done comparing all of the different 

states. Since the Hamiltonian matrix is a Hermitian matrix, and therefore symmetrical, we 

can use this to our advantage and only do the calculations for one triangle of the matrix.  
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An example of what this matrix looks like is given below for a closed system with 4 

sites and 2 excitations. On the right side are some matrix elements.    

  

3.3 Eigenvalues and Eigenvectors 

When the Hamiltonian operator acts on special cases of vectors, that will give back 

that same vector multiplied by a constant. That vector is called an eigenvector, and the 

corresponding constant is known as an eigenvalue [2]. The eigenvalues describe the possible 

energies of the system. The set of energies, or the eigenvalues, of the system are known as 

the spectrum.  

Once we have the matrix completed, we can diagonalize the matrix and compute the 

eigenvectors and the eigenvalues. To find the eigenvalues analytically, we subtract λ from 

each of the diagonal elements of the matrix. We find the determinant of the new matrix, 

which will be a polynomial with degree equal to the dimension of the matrix. Setting this 

polynomial equal to zero allows us to solve for λ, which are the eigenvalues. Once we have 

the eigenvalues, we can then compute the eigenvectors [1]. However, we deal in this thesis 

with large and complex matrices, so the diagonalization is done numerically.  

We start by analyzing the eigenvalues and eigenvectors to try to predict the dynamics 

of the system. We later study the dynamics and confirm our predictions.  

0 J/2 0 0 J/2 0
J/2 -!" J/2 J/2 0 J/2

0 J/2 0 0 J/2 0

0 J/2 0 0 J/2 0

J/2 0 J/2 J/2 -!" J/2

0 J/2 0 0 J/2 0

H11 = !!"" H !!"" = 0

H12 = !!"" H !"!" =
J
2

H22 = !"!" H !"!" = #J$

H=
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3.4 Histograms – Predicting Dynamics 

The study of the interplay between the Ising interaction and the flip-flop term allows 

us to make predictions about what to expect from the dynamics of the system. We first 

analyze the structure of the histograms of the possible energy values of the system. We begin 

by creating a histogram of only the diagonal elements of the Hamiltonian. In Fig. 1 we show 

the histograms for systems with L=10, N=5, Δ=0.5. The plot on the left shows results for an 

open chain, and the plot on the right shows results for a closed chain. We see in both 

histograms that there are distinct energy values that the states can possess, and there are clear 

gaps between the different bands of energy.  

 

Fig. 1: L=10, N=5, ∆= 0.5. Histograms of the diagonal elements of the Hamiltonian matrix written in the site-

basis. Left panel: open chain; right panel: closed chain. 

  For the histogram of the open chain there are two states in the first band, 

corresponding to those states with the lowest energy. The difference in energy between one 

band and the next is !∆/2, and the general expression for the energy of each band can be 

given by 2! − ! − 1   !∆/4  , where p is the total number of pairs of adjacent parallel 

spins. For a closed chain the energy difference between consecutive bands is !∆, and the 

diagonal energies are given by 2! − !   !∆/4 . As can be seen by comparing the two 

histograms in Fig. 1, the gaps between the bands are larger for a closed chain than an open 

chain. We also notice that there are fewer bands for a closed system than an open system. 
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The histogram for an open chain contains L-1 bands, and the histogram for a closed chain 

contains L/2 bands. Additionally, it is clear that the middle band for the closed chain is higher 

than that of the open chain. These differences between closed and opened chains are due to 

the border effects that are present only in open chains. 

For an open chain where N=L/2, the histogram is symmetrical, with the least 

populated bands always containing two states each, and the band containing the largest 

number of states in the middle. The bands increase in height until they reach the largest one, 

and then decrease symmetrically until reaching back to a height of 2.  If L is divisible by 4, 

the three middle bands are of equal height. Otherwise, the center band is the highest.  

We then made another histogram of the eigenvalues of the Hamiltonian matrix for the 

closed system. Depending on the strength of the anisotropy parameter, different results were 

obtained. 

In Fig. 2 we show histograms for systems with L=10, N=5, and periodic boundary 

conditions. The left column shows results for a system with Δ=0.5, and the right column 

shows results for a system with Δ=10. The top row displays histograms of the diagonal 

elements, and the bottom row displays histograms of the eigenvalues.  

When the anisotropy parameter was smaller than 1, meaning the Ising term was weak 

in comparison to the flip-flop term, the histogram of the eigenvalues did not display the gap 

structure that was seen in the histogram of the diagonal elements (Fig. 2, left). The 

comparative strength of the flip-flop term, which encourages movement of the excitations 

along the chain, causes a collapse of the band structure, thus suggesting that a state can 

evolve from its initial state into several other states. We expect that most basis vectors will 
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play a role in the evolution of the system because there are no energy gaps stopping a state 

from effectively coupling with another. 

 

Fig. 2: L=10, N=5, closed chain. Top row: histograms of diagonal elements. Bottom row: histograms of 

eigenvalues of the Hamiltonian matrix. Left column: Δ =0.5. Right column: Δ =10. 

Changing the value of the anisotropy parameter so that the Ising interaction is strong 

when compared to the flip-flop term reveals very different results. In the histogram of the 

diagonal terms of the system with Δ=10 (Fig. 2, top, right), we again see a clear band 

structure with gaps between the energy bands. In the two histograms of the diagonal elements 

the bands are separated from one another by a value of JΔ since it is a closed chain. 

Therefore, when Δ is larger, there is a larger difference in energy between adjacent bands. In 

contrast with the case of Δ=0.5, the plot on the bottom right (where Δ=10) shows that the flip 

flop term is not strong enough to overpower the Ising interaction. The histogram of the 

eigenvalues of this system retains some of its gap structure and there are still clear gaps 

between different values of energies. This suggests that under such conditions an initial state 

whose energy belongs in one of the bands would not be able to evolve into another 

configuration whose energy belongs to a different energy band. In other words, beginning 
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with an initial state in one band, only the states belonging to the same band can play a role in 

the evolution of the system. 

 

3.5 IPR 

This competition between the Ising interaction and the flip-flop term can also be seen 

in the structure of the eigenvectors, Ψ!. Each eigenvector is a linear combination of the basis 

vectors. For example, with our system of 4 sites and 2 up-spins, each eigenvector is a vector 

with 6 elements: a1|1100> + a2|1010> + a3 |1001> + a4|0110> + a5|0101> + a6|0011>, where 

a1, a2, a3, a4, a5, a6 are the probability amplitudes associated with each of the basis vectors. 

When we measure the system to try to find where the excitations are, the wave function 

collapses to one of the basis vectors. These normalized coefficients tell us about the 

probability of getting each state after the wave function collapses. |a1|2 is the probability of 

getting the corresponding state |1100>.  

Using these coefficients we can compute the inverse participation ratio (IPR), which 

provides another way to see the competition between the Ising interaction and the flip-flop 

term at the level of eigenvectors. In order to compute the IPR we take the sum |a1|4 + |a2|4+     

|a3|4+|a4|4+|a5|4+|a6|4 for each eigenvector, and compute the inverse of this sum.  In other 

words,  

        !"#(!) = !

|!!
(!)|!!

!!!
 ,        (3) 

where ak are the elements of the j-th eigenvector, and D is the dimension of the eigenvector.  

This number allows us to determine how much the eigenvectors are spread across the 

specific basis vectors. When the value of the IPR is very large, the eigenvectors are spread 

out and delocalized in that basis. When IPR is smaller, this tells us that the eigenvectors are 
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more localized in that basis and only a few of the basis vectors contribute to the eigenvector. 

IPR is maximum when all of the probability amplitudes are equal to each other. IPR is 

minimum when the value of one of the coefficients is 1 and the rest are 0.  

We created plots of IPR versus energy. Each dot on the plot corresponds to the value 

of the IPR for one eigenvector. In Fig. 3 we show this IPR vs. energy plot for an open 

boundary system with L=10, N=5. In the plot on the left ∆=0.5, in which case the Ising 

interaction is weak in comparison to the flip-flop term. In the plot on the right ∆=5, and the 

Ising interaction is strong compared to the flip-flop term.  

   

Fig. 3. L=10, N=5, open chain. Left panel ∆=0.5; right panel ∆=5. 

We can see that the values of the IPR are lower in the plot in the right, when the value 

of Δ is higher, indicating more localized states. In order to show this phenomenon of the 

localization of the eigenvectors more clearly, we graphed the value of the average IPR as ∆ 

increased from 0 to 20 (Fig. 4).  
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Fig. 4: IPR averaged over all eigenvectors vs. Δ, , L=10, N=5, open chain 

In Fig. 4 we see that the maximum delocalization occurs when ∆=0. From there, as ∆ 

increases, the value of the average IPR decreases until it approaches a constant value of about 

14. As the strength of the Ising term increases, the average IPR decreases, meaning that 

fewer members of the basis contribute to the eigenvector. In other words, as the Ising 

interaction increases and overpowers the role of the flip-flop term, the eigenvectors in the 

site-basis become less spread. When the plot levels out, at this point the energy bands do not 

overlap one another and the system is highly localized. 

 

4. Dynamics 

 

4.1 Probability and Magnetization  

The histograms and the IPR plots provide us with information about what to expect 

from the dynamics of the system over time. Next we study what actually happens as the 

system evolves over time. We begin with an initial state, Ψ 0 , which corresponds to one of 

the site-basis vectors, and the state evolves in accordance with Schrödinger’s equation, 

i! !
!t
" = Ĥ" .        (4) 
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The initial state couples with other states, transforming the initial state into a 

superposition of the site-basis vectors. From the histograms and IPR plots we expect that 

when the Ising term is weak in comparison to the flip-flop term (when ∆< 1) the initial state 

will spread over several basis vectors. When ∆> 1 and the Ising is stronger than the flip-flop 

term we expect to see that only states belonging to the same energy band as the initial state 

will be involved in the dynamics. In order to confirm these predictions we study two different 

observables, magnetization and probability.  

First we need to understand how the system evolves in time. For simplicity, this will 

be explained for a system with 3 sites and one up-spin. For this system, the basis vectors in 

the site basis are: 

!! = 100  

!! = 010  

!! = 001  

As explained earlier, the eigenvectors are a linear superposition of these basis vectors. For 

example, !! = !!!!! + !!"!! + !!"!!, and similarly for eigenvectors !! and !!.  

In order to evolve the system in time we must put the initial state, with normalized 

coefficients, in terms of the eigenvectors. To do so we project the vector corresponding to the 

initial state in the site basis onto the eigenvectors.  

Assuming our initial state is given as  

Ψ 0 = !!! + !!! + !!!, 

to evolve this state in time we add in the time dependence and have the equation  

Ψ ! = !!!!!!!!! +   !!!!!!!!! + !!!!!!!!!, 
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where the constants A, B, C depend on the initial state. In more general terms this equation 

can be written as  

          Ψ ! = !!!!!!!!!!!
!!! .        (5) 

Both probability and magnetization can be used to analyze the dynamics of the 

system. Magnetization of each site refers to the orientation of the spin on each individual site. 

A magnetization of +0.5 refers to a spin oriented directly upward, and a magnetization of -0.5 

refers to a spin oriented directly downward. As we mentioned earlier, the total spin in the z-

direction of the system is conserved. Therefore, since here we are working with an isolated 

system, the total magnetization is constant throughout the dynamics. To find the 

magnetization of a site we use   

Mn (t) = !(t) n
z

!
2

!(t) , 

where !!! operates only on site n. 

An example of a plot of the magnetization is displayed below in Fig. 5 and clearly 

shows the movement of a single excitation along a chain. The plot shows results for a chain 

with open boundary conditions with 6 sites and one excitation initially placed on site number 

1. As the system evolves, the excitation moves from one site to the next. The single 

excitation starts on site 1, so the magnetization on site 1 is +0.5, and the magnetization on the 

rest of the sites, containing down-spins, is -0.5. As time proceeds, the excitation moves from 

the first site to the second site, and as this happens the magnetization on site 1 decreases, and 

the magnetization on site 2 increases. This pattern continues as the excitation moves along 

the chain. When the spin reaches site 6, the edge of the chain, we see that the magnetization 

again becomes relatively large. This is an example of a border effect, which does not exist 
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with a closed chain. This plot allows us to clearly see the excitation being moved from one 

site to the next along the chain.  

 

Fig. 5: Magnetization over time for an open chain with L=6, N=1, Δ=0.5, Ψ(0)= 100000  

When a measurement is done on the system, the system collapses to one of the basis 

vectors. Probability is the odds of measuring a basis vector !! at time t. The maximum value, 

as with all probabilities, is 1, and the minimum value is 0. To calculate the probability we use  

!! ! = !!
(!)!!

(!)!!!!!!!
!!!

!
. 

This expression is obtained by writing Eq. (5) in terms of the basis vectors. We take 

advantage of the fact that the eigenvectors of a symmetric real Hamiltonian matrix are all 

real. Since there are no imaginary numbers involved we don’t need to include any complex 

conjugates. 

We use probability plots for a closed chain with 4 sites and 2 excitations to confirm 

our predictions for the effects of changing the anisotropy parameter ∆ on the evolution of the 

system. In Fig. 6 we show the histogram of the diagonal elements of this system. As we can 

see there are two distinct bands in this plot, separated by an energy of JΔ.  Next to each 

energy band on the plot there is a list of the states contained in that band. With 4 sites and 2 
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excitations there are 6 possible configurations. One band, of energy –JΔ, contains 2 of these 

states. The other band, of energy 0, contains the remaining 4 states.  

  

Fig. 6: Histogram of diagonal elements of Hamiltonian matrix for closed chain with L=4, N=2 

We do not start the system with an initial state that is an eigenvector of the system 

because then the system will not evolve. Rather, in this case the system begins with the initial 

state , which is one of the two states in the first energy band. As Fig. 7 shows, when 

Δ=0.5, when the system evolves all 6 basis vectors play a role in the evolution.   and 

 play the greatest role in the evolution, but the other four states also contribute to the 

dynamics. When Δ=0.5, the energy difference between the two bands is 0.5. Therefore, the 

flip-flop term is strong enough to collapse this band structure and all the states are involved 

in the evolution. In contrast, when Δ=10, fewer states play a role in the evolution. The 

difference in energy between the two bands is 10, and therefore the Ising term overpowers 

the flip-flop term and the band structure is retained. Beginning again with the state , 

the only state that plays a role in the evolution is the other state contained in the same energy 

band, namely . The other 4 states have a probability of practically 0 throughout the 

evolution because they play no role at all in the dynamics of this system. Additionally, the 

evolution of the system from one state to another takes much longer when Δ is larger. When 

-J∆ 0
Diagonal elements of H

0

1

2

3

4

5

N
u
m

b
er

 o
f 

st
at

es

0

1

2

3

4

5

!!""

!""!

""!!

"!!"

Closed chain, L=4, N=2

!"!"

"!"!

!"!"

!"!"

!"!"

!"!"

!"!"



 24 

Δ=10, the system must go through several virtual states in order to evolve from  to 

, and going through those virtual states requires more time. 

 

Fig. 7: Probability in time to find a specific basis vector, closed chain, L=4, N=2. Left plot: Δ=0.5. Right plot: 

Δ=10. 

The study of the dynamics using the observables magnetism and probability 

confirmed the expectations from the histograms and from the analysis of the IPR. As the 

strength of the Ising interaction increases and overpowers the flip-flop term, fewer of the 

basis vectors play a role in the evolution of the system, and the evolution from one state to 

another requires more time. 

 

4.2 Symmetries 

As we saw through the study of the dynamics of the system, the relative strengths of 

the Ising interaction and the flip-flop term can limit the dynamics of the system. There are 

additional factors that can limit the dynamics of the systems, such as symmetries. If the 

Hamiltonian is invariant under a symmetry operation that means there is a conserved 

quantity. In other words, if an operator commutes with the Hamiltonian, it is a sign that some 

quantity is conserved. One such conserved quantity that we already mentioned is the total 

spin the z-direction. Total spin in the z-direction commutes with the Hamiltonian, or in other 

!"!"

!"!"
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words !!"!#$! ,! = 0. This conservation is what led to the creation of subspaces in the 

complete Hamiltonian matrix. As confirmation, we saw through the dynamics that the total 

number of excitations, and hence the total magnetization in the z-direction, is conserved. If 

the initial state has only 1 excitation, the only other states that have a potential to play a role 

in the dynamics of the system are those states with only 1 excitation. Symmetries limit the 

number of states that can play a role in the dynamics.   

Another type of symmetry that our system may have is parity, !. The initial state of 

our system is a linear combination of our basis vectors. If there is a combination such as 

, where the two basis vectors involved are a mirror image of one 

another, this is referred to as even parity, ! = +1. If one of these basis vectors is subtracted 

from the other, it has odd parity, ! = −1. An example of a state with odd parity is 

!"!""! # !""!"!( ) / 2 .  

In order to create the probability and magnetization plots that would provide us with 

information about parity we need to use a different basis. A basis that works is the 

eigenvectors of the Hamiltonian with only the off-diagonal elements considered, and the 

diagonal elements being set to zero. This is known as the XX basis. 

We again begin with a normalized vector in the site-basis corresponding to the initial 

state of the system, and project this vector onto the basis of the XXZ eigenvectors. This new 

vector then evolves in time the same way as was done previously for the dynamics. This new 

vector is then projected onto the basis of eigenvectors of the XX basis. Using these values to 

find the probability of measuring a certain XX basis vector at time t permits us to see the 

effects of beginning with a state with such a symmetry. What we find is that only those basis 

!""!!" + "!!""!( ) / 2
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vectors that have the same parity as the initial state will play a role in the evolution of the 

system.  

For example, for an open system with 4 sites and 2 excitations, the eigenvectors of 

the XX Hamiltonian are:  

{-0.223607, -0.5, -0.447214, -0.447214, -0.5, -0.223607},  

{-0.223607, 0.5, -0.447214, -0.447214, 0.5, -0.223607},  

{-0.5, -0.5, 0, 0, 0.5, 0.5},  

{-0.5, 0.5, 0, 0, -0.5, 0.5},  

{0.632456, 0, -0.316228, -0.316228, 0, 0.632456}, 

{0, 0, -0.707107, 0.707107, 0, 0}.  

In each of these vectors, each element corresponds to the probability amplitude of the basis 

vectors listed above in Eq. (2), namely the six possible distinct configurations of spins in 

decreasing numerical order, starting with 1100  and ending with 0011 .   

If an eigenvector has even parity, then the elements of the eigenvector will be 

symmetric with the same signs. If it has odd parity, the elements will be symmetric with 

opposite signs. In this example, only eigenvectors 1, 2, and 5 have even parity. When we 

begin with an initial state with even parity, , and allow the XXZ 

system with Δ=0.5 to evolve with time, Fig. 8 shows that only the eigenvectors 1, 2, and 5 

play a role in the dynamics. The other eigenvectors have a probability of 0 throughout the 

evolution.  

!!"" + ""!!( ) / 2
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Fig. 8: Probability plot for initial state with even parity. Open chain, L=4, N=2, Δ=0.5 

If we were to begin with an initial state with odd parity we would expect that any 

eigenvectors that play a role in the dynamics would have odd parity. In fact, beginning with 

the state , which has odd parity, the probability plot (Fig. 9) shows 

exactly as we would expect.  

 

Fig. 9: Probability plot for initial state with odd parity. Open chain, L=4, N=2, Δ=0.5 

The two eigenvectors that play a role in the evolution of the system are the third and 

fourth, or {-0.5, -0.5, 0, 0, 0.5, 0.5} and {-0.5, 0.5, 0, 0, -0.5, 0.5} respectively, which both 

have odd parity.  

In addition to parity there is another symmetry that our system may have, and that is 

180° rotation around the x-axis, !!"#°! . This refers to a state in which the orientation of each 

spin is rotated by 180° around the x-axis. For example,  
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!!"#°!  =(+1) 

while 

!!"#°! = −1 . 

Just as with the parity symmetry, if the initial state has a certain eigenvalue of !!"#°! , only 

those XX eigenvectors that have the same eigenvalue will appear on the plots as playing a 

role in the evolution of the system. We see this in Fig. 9 with the absence of the sixth state in 

the evolution. The sixth state has even parity like the initial state, but this state does not 

participate in the evolution because it has an eigenvalue of  !!"#°! = −1, while the initial 

state has !!"#°! = +1.  

As we have seen, symmetries limit the eigenvectors that can contribute to the 

dynamics of the system. The more symmetries the initial state has, the fewer eigenvectors 

there are with those same symmetries that can play a role in the dynamics.  

 To further study the effects of these symmetries on the dynamics we consider four 

different initial states: 

 

where  has even parity,  has odd parity,  is an eigenvector of the 

operator  !!"#°!  with eigenvalue of +1, and  is an eigenvector of ! with eigenvalue -1 

and is also an eigenvector of  !!"#°!  with eigenvalue +1. In Table 1 each initial state is shown 

as a linear combination of the eigenvectors of the system in order to see which eigenvectors 

can play a role in the evolution. The left side of the chart lists the eigenvectors and their 

!"!!"" + "!""!!( ) / 2

!"!!"" # "!""!!( ) / 2

!A (0) = "###"" + ""###"( ) / 2

!B (0) = "###"" $ ""###"( ) / 2

!C (0) = "###"" + #"""##( ) / 2

!D (0) = "###"" $ ""###" + #"""## $ ##"""#( ) / 2

!A (0) !B (0) !C (0)

!D (0)
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corresponding eigenvalues for the eigenvectors ! and  !!"#°!  respectively. The top three rows 

of the table display the initial states and the corresponding eigenvalues of ! and  !!"#°! . The 

remaining contents of the table show the values of the probability amplitudes of the 

eigenvectors for each of the four initial states. The table clearly shows that only the 

eigenvectors that have the same symmetries as the initial state will contribute to the evolution 

of that initial state [5].  

Table 1: 
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5. Chaotic Systems 

The clean integrable systems studied above were all non-chaotic systems. We now 

look at chaotic systems and compare the behavior of these systems with that of the non-

chaotic systems. Specifically, we analyze the effects of introducing an impurity, ε, to the 

middle of the chain, and separately the effects of including next nearest neighbor (NNN) 

coupling in addition to nearest neighbor (NN) coupling [8]. The impurity is created with a 

magnetic field acting on site (L/2)+1 that is slightly different from the field acting on the 

other sites. With next nearest neighbor coupling, a spin on one site no longer communicates 

only with the spins immediately next to it, but also with the spins two sites away. With NNN 

coupling, as opposed to with only NN coupling,  can successfully couple with . 

An impurity in the middle of the chain and next nearest neighbor coupling 

individually render the system as being chaotic. In both of these cases the system can no 

longer be solved analytically, and must be solved numerically.  

In classical physics, the time evolution of non-chaotic systems are predictable, while 

chaotic systems diverge and are not predictable. As we mentioned above, if the system starts 

with the same initial conditions, a chaotic system will diverge and behave differently each 

time. Quantum systems showing signatures of chaos are referred to as chaotic quantum 

systems. Integrable systems flow ballistically, which means they flow easily and don’t 

encounter obstacles, and can provide for transport of things such as energy or magnetization. 

In contrast, chaotic systems are diffusive and encounter obstacles. 

 

 

 

!!"" !""!
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Now that we have slightly changed the system, the Hamiltonian is  

      H= HZ + HNN + αHNNN,                    (6) 

where 

HZ = εL/2+1Sz
L/2+1, 

HNN = ![ !!!!!!!! + !!
!!!!!

! + !!!!!!!!! ]!!!
!!! ,  

and 

HNNN = ![ !!!!!!!! + !!
!!!!!

! + !!!!!!!!! ]!!!
!!! ,  

This HNNN is the Hamiltonian for next nearest neighbor coupling, corresponding to the 

couplings between a spin and those two sites away, and the ratio between NNN and NN is α. 

The observable we use to study the time evolution of these systems is local 

magnetization, which is the sum of the magnetization of the sites of the first half of the chain. 

An excitation on one site contributes +0.5 to the local magnetization, while a down-spin 

contributes -0.5 to the local magnetization. Our initial state has L/2 spins pointing up, so the 

dynamics is confined to the subspace with !!"!#$! = 0. We begin with a domain wall state, in 

which all of the up-spins are on the left of the chain and all of the down-spins are on the right 

side of the chain [8]. Using a chain with open boundary conditions containing 12 sites and 6 

up-spins, the local magnetization begins at a value of 3 and decreases as the system evolves 

in time and the excitations move to the right. Below, in Fig. 10, we have a plot showing the 

decay of the local magnetization over time for three different clean systems with NN 

couplings that differ only in the values of the anisotropy parameter. The values of Δ for the 

systems being analyzed include Δ=0, 0.5, and 1.  
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Fig. 10: Clean, integrable system. Black: Δ=0; Red: Δ=0.5; Blue: Δ=1. L=12, N=6, open chain 

From the plot it seems that for the clean integrable system the magnetization of the 

system decays the fastest when Δ=0. As expected based on the analysis above, as the strength 

of the Ising interaction increases, the excitations move more slowly, and therefore the local 

magnetization decreases more slowly.  

Similar plots were created showing the decay in magnetization for the system with an 

impurity and the system with next nearest neighbor coupling respectively. The system with 

the impurity behaved similarly to the clean integrable system (figure not shown). The rate of 

decay of the magnetization decreased as the value of the anisotropy parameter increased. 

However, the system with NNN coupling  showed strange behavior. As Fig. 11 shows, the 

conditions under which the system decayed most rapidly was when Δ=0.5. This is different 

than the expected results where the decay of the local magnetization is greatest when Δ=0. 

 

Fig. 11: NNN coupling. Black: Δ=0; Red: Δ=0.5; Blue: Δ=1. L=12, N=6, open chain 
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We took several approaches to try to understand the cause of this strange behavior. 

First we looked at plots for a chain with periodic boundary conditions and found that the 

same phenomenon was seen. Namely, with the NNN coupling the local magnetization of the 

system with Δ=0.5 decayed most rapidly, and not the system with Δ=0. Since the strange 

phenomenon was seen in a system with periodic boundary conditions, we can remove 

boundary effects as a possible reason for this anomalous behavior. 

We also compared the energy of the initial state to the spectrum of the whole system, 

expecting to find some distinguishing feature for the system with NNN coupling and Δ=0.5, 

such as perhaps having the initial state with energy too close to the middle of the spectrum, 

where the density of states is larger. We created histograms of the eigenvalues, 

corresponding to the allowed energies of the system. The vertical red line denotes the energy 

of the initial state. The percentage shows where in the range of possible values the energy of 

the initial state lies. As Fig. 12 shows, as the Ising interaction increases in strength, the 

energy of the initial state increases and moves more towards the maximum eigenvalue. When 

an impurity or NNN coupling is introduced to the system, the movement of the initial energy 

towards the maximum eigenvalue is slightly less drastic. However, based on the histograms 

below we concluded that this strange behavior of the system with NNN coupling does not 

find a justification from this analysis. 
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Fig 12. Plots denoting energy of initial state as compared to all eigenvalues of the system. Top row: clean 

integrable system. Middle row: impurity. Bottom row: NNN coupling. Left column: Δ=0. Middle column: 

Δ=0.5. Right column: Δ=1 

We studied the local magnetization of the system beginning with other initial states 

besides for the domain wall state to verify whether or not the strange behavior of the NNN 

system was related to the particular domain wall initial state. However, the strange 

phenomenon was again seen when the system had NNN coupling (figure not shown). 

Additionally, not only did the system with Δ=0.5 decay more rapidly than the system with 

Δ=0, but the system with Δ=1 decayed most rapidly. This is even more surprising because at 

Δ=1 the flip-flop term and the Ising interaction are equal in strength, while for the other two 

values of Δ the relative strength of the flip-flop term is greater, encouraging movement of the 

excitations. Despite these expectations, the local magnetization of the system with Δ=1 

decayed most rapidly. 
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Once we were unable to find an explanation for the anomalous behavior, the next step 

was to study different variations of the Hamiltonian. Originally, we were studying systems 

that had an Ising interaction and a flip-flop term for both the nearest neighbor interactions 

and the next nearest neighbor interactions, for a total of four terms. We looked at the effects 

of removing individual terms from this four-term Hamiltonian, such as removing only the 

NN Ising interaction, or only the NNN flip-flop term.  

The four combinations we studied included: 

1) No NN Ising interaction: 

H = ! !!!!!!!! + !!
!!!!!

!!!!
!!! +  α[ ![ !!!!!!!! + !!

!!!!!
! + !!!!!!!!! ]!!!

!!!   

2) No NNN Ising interaction :  

H = ![ !!!!!!!! + !!
!!!!!

! + !!!!!!!!! ]!!!
!!! +  α[ ![ !!!!!!!! + !!

!!!!!
! ]!!!

!!!   

3) No NN flip-flop term: 

H = !"!!!!!!!!!!!
!!! +  α[ ![ !!!!!!!! + !!

!!!!!
! + !!!!!!!!! ]!!!

!!!   

4) No NNN flip-flop term: 

H = ![ !!!!!!!! + !!
!!!!!

! + !!!!!!!!! ]!!!
!!! +  α[ !"!!!!!!!! ]!!!

!!!    

From the four combinations considered, the only one that exhibited this strange behavior was 

the case in which NNN Ising was removed (case 2). The only difference between this case 

and the clean integrable system in which there was no anomalous behavior is an additional 

NNN flip-flop coupling. Though we can still not conclude exactly what causes this 

anomalous behavior, we can narrow down the options and suggest that this phenomenon 

stems from the interplay between the NNN flip-flop and the NN Ising terms.  
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6. Heat Transfer 

 After the detailed analysis of static and dynamic properties of integrable and chaotic 

spin-1/2 systems, we were ready to couple the system to baths and study heat transfer. In 

order to do so we use a model to describe the effects of the interaction with the baths. We 

attach baths of different temperatures to each end of the chain [9]. In this case, the total 

magnetization is no longer conserved, because the baths can add or remove excitations from 

the chain. The cold bath takes energy from the system and can therefore take an up-spin and 

turn it into a down-spin, while the hot bath adds energy to the system and can make a down-

spin into an up-spin. 

 For such non-isolated systems, the dimension of the Hamiltonian to be diagonalized 

increases significantly because it now includes the whole Hilbert space. The dimension of 

this matrix is 2L. We consider a generic initial state which in this case is a random 

superposition of all 2L basis vectors. In order to create a random initial state, we created a 

random Hermitian matrix. This random matrix had to be symmetric, so in order to ensure that 

this was so, we used the sum of a matrix with random elements from a Gaussian distribution 

and the transpose of that same random matrix. The resulting matrix was then diagonalized 

and an eigenvector of this matrix was used as the initial state. The system is evolved 

according to Schrödinger’s equation. We do this by continuously applying the propagator 

! ! = exp  (−!"#) to the initial state so that the system evolves for a long time until it 

reaches an equilibrium.  

 The state evolves freely during equal successive intervals of time. In between two 

such intervals, the edge spins of the system are reset to model the effects of heat baths. The 

method used to determine whether or not the hot/cold baths change the orientation of an edge 
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spin is through generation of random numbers. The cold bath (on the left of the system) and 

the hot bath (on the right side of the system) each have a chemical potential µ associated with 

it. For the cold bath, µL is set to 0.35, and for the hot bath, µR is set to 0.75. 

 Randomly generated numbers ξL and ξR are compared with their respective chemical 

potential. If ξL< µL, which is less likely, the edge spin will be oriented up. In the case which 

is more likely, that ξL>µL, the cold bath causes the edge spin to be a down-spin. Similarly, 

majority of the time the hot bath will cause the edge spin to be an up-spin, but sometimes, 

when ξR>µR, the edge spin will be a down-spin. This process continues as the system evolves 

until an equilibrium is reached.  

 Once a steady equilibrium is reached, the magnetization of each site can be measured. 

Based on these measurements we can determine whether or not the system follows the 

Fourier Law. If the system is chaotic, we expect that the magnetizations will be a gradient, 

where the magnetization steadily increases as we move from the site closest to the cold bath 

to the site closest to the hot bath. This situation follows the Fourier Law. For an integrable 

system we expect there to be no gradient. We expect that along the chain the magnetization 

would be approximately zero and this system does not follow the Fourier Law.  

 At this point we have written the code that models the chain attached to the cold bath 

on one end and the hot bath on the other end. According to the process described above, the 

system evolves and is appropriately adjusted due to the baths. However, further work must be 

done to have this process continue until the system reaches an equilibrium state. Once that is 

completed, we can produce results in an effort to confirm the expectations of seeing a 

gradient in the magnetization for chaotic systems and no gradient for integrable systems.   
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7. Conclusions 

In this work we studied the static and dynamic properties of both integrable and 

chaotic spin-1/2 systems described by the Heisenberg model. Using the observables 

magnetization and probability to study the evolution of the integrable system, we saw several 

factors that can limit the evolution of the system, including the magnitude of the anisotropy 

parameter as well as symmetries of the initial state. While studying chaotic systems we 

studied the anomalous behavior detected when a system had next nearest neighbor coupling. 

An exact cause for this behavior was not determined, but we were able to narrow down the 

possible causes, concluding that it is related to the interplay between the NNN flip-flop and 

the NN Ising terms. Finally, we modeled a chain attached to a cold bath on one end and a hot 

bath on the other, and we are in the process of using this model to study heat transfer in 

integrable and chaotic systems.  
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