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1. Introduction 

As humans, we rely on our senses. Science teaches us to experiment through observation; 

through witnessing the world around us. How ironic is it then that the actual fundamental science 

is that which is not really discernable by eye; is that which is really counter-intuitive to any 

observations us humans could have. The science of quantum physics is the science of the universe 

in its most fundamental form. Its elegance, which is hidden in classical physics - in the bulky study 

of macroscopic objects - is revealed at last in the study of the microscopic building blocks of the 

universe, the tiny quantum particles. 

This thesis explores the interaction of these particles in two quantum systems. It explores 

their energies and accessible states, and it explores the evolution of the systems through time. The 

systems in use are described by a one-dimensional (1D) model (a chain), and by a two-dimensional 

(2D) model (a plane). These models are employed in a variety of current studies of theoretical, 

experimental and technological interest, such as quantum computing, quantum cryptography, 

quantum sensors, spintronics, and the search for new phases of matter.  

The quantum systems that we study have two particles, and because of the interaction 

between them, they may stick together and move together as a single heavier particle. These bound 

pairs, in which the particles occupy the same site, are often referred to as doublons, and they have 

been detected experimentally [1]. In the systems that we study here, the bounded excitations are 

in neighboring sites, but we will also refer to them as doublons, since the problem is analogous. In 

this thesis, I study how robust the doublons are - whether they survive the presence of impurities 

in the system and whether the geometry of the system, 1D or 2D, can make them more or less 

robust. 
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In order to begin the discussion of the research, some topics on Quantum theory and the 

needed mathematical tools from Linear Algebra must be reviewed.  

 

2. What is Quantum Physics? 

 To get the discussion started, we are going to look at a few different experiments which 

clearly illustrate some key elements of quantum physics [2].  

2.1 Double-slit experiment. 

The first experiment is the classic double-slit experiment. In this thought experiment by  

Richard Feynman [3] (which was later realized in the lab [4]), a wall is set up with two slits a 

distance apart from each other. There is a detector on the backstop behind the wall which can 

detect particles. A source, which contains electrons is then beamed onto the wall.  

 

Figure 1: Schematic representation of the double-slit experiment proposed by Richard Feynman. 

(a) A wall with two thin slits, (b) probability of finding the electrons when only one slit is open: 

2 distinct crests where the slits are, (c) the probability of the actual results when both slits are 

open, wave-like distribution.  
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When one of the slits is open and one of the slits is closed, the detection on the backstop is as 

would be expected if one were to shoot bullets at a wall through a little hole. The highest point of 

detection is that right behind the slit as in Fig.1 (b), where P1 is for the probability of finding the 

particle that went through slit 1 and P2 for the probability of finding the particle that went through 

slit 2, with smaller points of detection nearby and adjacent to that central spot. This illustrates the 

particle-like characteristic given to electrons. When both slits were open, however, something very 

unexpected would happen. In this scenario, instead of there being the two distributions overlapping 

into a new distribution peaked between the two, Ptotal = P1+ P2, there appeared to be an interference 

type of depiction on the backstop as shown in Fig.1 (c). Interference is wave language, not particle 

language. The interference pattern seen in Fig.1 (c) is typical of what we get when waves, such as 

water waves, go through the slits. And thus we must conclude that not only do electrons have 

particle-like characteristics, but they also have wave-like characteristics. This leads to the term 

“wave-particle duality” that is so much discussed in quantum physics. Furthermore, the wave-like 

nature of these electrons introduces an integral concept of quantum physics: Probability! 

Probability is a key concept in the Quantum ideas that will be discussed in this thesis. We do not 

know at the same time where an electron is and what its velocity is at any given moment, rather 

we know the probabilities of the different positions an electron may be in at a given moment in 

time. The sum of all these probabilities will equal 1, as the electron DOES of course exist 

indisputably.  

The notion of probability when it comes to quantum particles such as electrons, raises the 

concept of superposition. We say loosely that an electron exists in different states at the same time, 

more formally, we say that a quantum object is in a superposition of various different states. It is 

only when we decide to find a precise location of the electron by doing a measurement that the 
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system collapses to a single state. The probability is then useful to say where we are likely to find 

the electron once we measure the system. If, however, the system remains un-collapsed, and the 

exact location of the electron unknown, Quantum theory states that the electron in fact exists in all 

of the possible forms for which we have probabilities. 

2.2 Stern-Gerlach experiment. 

A second experiment I would like to discuss is the Stern-Gerlach experiment. Essentially, 

this experiment proved that the electron has its own internal spin (its own intrinsic angular 

moment) and that the spin is quantized: that it has only two possible discrete values and not a 

continuum of values. The experiment is set up with a magnet apparatus. The electrons are beamed 

through a slit which then directs the electrons through a magnetic field and then onto a screen.  

 

Figure 2: Sketch of Stern-Gerlach experiment: A beam of silver atoms is sent through an 

inhomogeneous magnetic field. The silver atoms come out of the magnetic field and hit a screen 

perpendicular to their initial path. On the right, the intensity distribution is observed on the 

screen; in blue is the classical expectation versus the quantum result in red. There are only two 

possible quantum results +1/2 or -1/2. The silver atom used in the experiment has a total of 47 

electrons, 23 of one spin type, and 24 of the opposite. Because electrons of the same spin cancel 

each other out, the one unpaired electron in the atom will determine the spin of the silver atom. 



 6 

 

From classical physics, we would expect that the magnetic moment (spin) of the electron could 

take on a variety of different values – would be a continuous line on the back wall, as seen in blue 

on the right side of Fig.2. This is not what the result was in reality. In reality there were two distinct 

paths that the electron took, not a smudge of a variety of options, as seen in red on the right side 

of Fig.2. This indicates to us, that the electron must have its own internal spin, which is either 

attracted or repelled by a magnetic pole. It was concluded that the electron does indeed either have 

an up-spin (+1/2) or a down-spin (-1/2); the electron becomes parallel or anti-parallel to the 

magnetic field that it goes through. 

To summarize, this Sec.2 introduced qualitatively some of the main concepts of quantum 

physics: the wave-particle duality, the existence of particles in a superposition of different states, 

the notion of the collapse to a single state after a measurement, the fact that quantum mechanics is 

an intrinsically probabilistic theory, and that quantization (of spin in the example above, but also 

of energy) is also present in the quantum world.  

 In the next sections, my descriptions will become more quantitative. I start by talking about 

probability and for that we need to introduce the notion of “wave function” and how to obtain it. 

As mentioned earlier, a key element of quantum physics, is the wave-particle duality that an 

electron (or another quantum particle) has. The “wave” aspect is at the core of the notion of 

probability.  

 

3. Wave function and Schrödinger equation  

In quantum mechanics, all information about the system and its dynamics is contained in 

the wave function. With the wave function we can compute the mean value of quantities, such as 
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position and momentum, and how they change in time. In order to derive the wave function of a 

particle and to explain its evolution throughout time, we must solve Schrödinger’s equation 

(1) 

where 𝑖 is the square root of -1 and ħ is Planck’s constant (h) divided by 2𝜋 or:  

(2) 
Psi (Ψ) is the wave function, m is the mass of the particle, and V is a potential. The wave function 

is an abstract mathematical tool, but its absolute square is physical. When written in terms of 

position, for example, as in the solution of Eq.(1), the absolute square of the wave function 

corresponds to the probability of finding the particle at position x and time t,  

  (3) 

The integral of this probability over the entire space has to be 1, since the particles exists 

somewhere, 

(4) 

This process, of computing the integral of the square of the wave function over the whole 

space and forcing it to get a result of one, is called normalization. Schrodinger’s equation ensures 

that no matter the change of the system throughout time, the normalization of the wave function 

still occurs. 

To solve Schrödinger equation and obtain the wave function Ψ(x,t), we need to know the 

potential. In the case of a potential that is time independent, we can use the method of separation 
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of variables to solve the equation. The procedure goes as follows [2]. We write the wave function 

as a product of two functions, one dependent on position only and the other dependent on time 

only, 

(5) 

This implies that the partial derivative on time becomes an ordinary derivative of f(t)  

                 (6) 

and the partial derivative on position becomes an ordinary derivative of Ψ(x) 

           (7) 

Using Eq.(6) and Eq.(7) in Eq.(1) allows us to separate the time dependent Schrödinger 

into two parts, the equation for f(t) 

       (8) 

and the equation for Ψ(x) 

(9) 

In the two equations above, E is a constant, which actually represents the energy of the system. 

Equation (8) is easy to solve and gives us , while to solve Eq.(9) we need to 

know the potential.  
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Equation (9) can also be written in a more general form if we use the so-called Hamiltonian 

operator  

(10) 

which leads to 

          (11) 

The Hamiltonian operator in quantum mechanics, just as the Hamiltonian in classical mechanics, 

gives us the energy of the system. 

 We use Eq.(9) for 1D systems where the particle can occupy any position in space. In lattice 

systems, however, the particle can only be in some fixed positions of space, known as sites. An 

illustration of a lattice is provided in the figure below, where each circle represents a particle. The 

particle can hop from one site to the other, but it cannot be between sites. 

 
FIGURE 3: Sketch of a 2D quantum lattice, where the circles represent the particles. A particle 

can only be found on a site, not between sites. 
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Equation (11) is the time-independent Schrödinger equation in its most general form and it is 

therefore an appropriate equation to describe a lattice system, as the ones we study here. In this 

case, the Hamiltonian is a matrix and Ψ is a vector, as we show below.  

 

4. Spin-1/2 System 

In our lattices, all sites are occupied with a fixed particle that has a spin #
$
. There is a strong 

magnetic field pointing down in the z-direction and acting on the entire lattice, so that the spin of 

the particle either points up in the z-direction or down. We call the up-spin, which is anti-parallel 

to the magnetic field, an excitation and it can be denoted as |↑ 〉 = ⎢1〉 = 10  . A particle parallel to 

the magnetic field is in its ground state; it has less energy and is called a down-spin, denoted as 

⎪↓〉 = ⎪0〉 = 01 .  

 Let me start by describing a lattice composed of only four sites, or in other words, four 

particles. The particles are on a chain with periodic boundary conditions, also called a “closed 

chain”, that is, it is a ring, such that the "first" site also connects to the "last" site in our system. 

The figure below illustrates this 4-site lattice 

                                                         

 

 

We can represent the state of the lattice above as an array of up- and down-spins or, equivalently, 

an array of 0’s and 1’s as shown below, where the thick curved arrows remind us that the first and 

last sites are connected. 

↓ ↓ 

↑ ↑ 
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⎪↑↑↓↓〉 or ⎪1100〉 

In the particular example above, there are 2 up-spins and 2 down-spins. As we will see, our system 

conserves the total number of up-spins and down-spins. In this scenario, our up-spins can be 

distributed throughout the four sites in a few different variations; namely a total of six variations: 

{1, 1, 0, 0}, {1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 1, 1} 

We say for this that any eigenvector in our system will be composed of these six basis vectors. We 

symbolize the number of sites (or particles) in our system by denoting it with an "L". We calculate 

the dimension of the Hilbert space of our system, that is the number of basis vectors that exist in 

our system, by figuring out the number of permutations that we can configure with the number of 

up-spins. 

L = number of sites (4 in our example) 

up-spins = 2 (in our example) 

down-spins = L – up-spins (4-2 = 2 in our example) 

dim = 
(!

*+,-+./-!012/,-+./-!
 . 

(12) 

Notice that if there is a single up-spin in the system, the dimension of the Hilbert space equals the 

size of the chain, dim=L. However, as the ratio between up- and down- spins approaches 1, the 

dimension becomes significantly larger than L, especially when the chain is large. In our work, we 

only consider 2 up-spins, so that our Hilbert space grows quadratically on the size of the chain, 

dim=L(L-1)/2.  
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The Hamiltonian of our system describes the interactions between the particles and is used to 

obtain the discrete energies of our isolated system. For each accessible energy, there is a 

corresponding eigenstate that describes the state of the system at that energy level.  

 

5. A Brief Discussion of the Hamiltonian operator 

The Hamiltonian that describes our systems includes three main elements: a defect, the Jz term, 

and the Jxy term [5].  

(13) 

where σz and σx, σ y are the Pauli matrices, 

σx = 0 1
1 0  

σ y = 0 −𝑖
𝑖 0  

σz = 1 0
0 −1  

d is the site where there is a defect, εd is the defect excess energy, h is the amplitude of the external 

magnetic field pointing down in the z-direction, Jz is the strength of the Ising interaction, and Jxy is 

the amplitude of the hopping term. We will now explain these terms. 

5.1 First two terms 

Let us explain the effect of (ε σz + h σz) first on one up-spin and one down-spin, then let 

us see the effect of (ε σz + h σz) on different spin configurations. This term means that we have an 

external magnetic field acting on all the sites that are providing energy, splitting h between the 

down-spin with energy −5
$
 and the up-spin with energy +5

$
. In addition to this field, there is an 

<latexit sha1_base64="FwBr/w4YTQXljsXZ+1mdmPYyPHI=">AAACwnicbZFNT9wwEIad0A+6/drSYy9WV5WokFYJoioXVER7QFUPVOoC0iZEjjPZ9WI7wXbQBjd/sjf+TZ0lVAQ6kqXX8z7jsT1pyZk2QXDt+WuPHj95uv5s8PzFy1evh282jnVRKQoTWvBCnaZEA2cSJoYZDqelAiJSDifp+dfWP7kEpVkhf5m6hFiQmWQ5o8S4VDK8PsR7OMoVoTZs7HaDIyg1486ymdtoNhMkyc6u8Faf0pVI7GIvbM5+4Pktt+hzO00PizjkZoq/J/aquVvRSbvYclh7gCOWdYM3/zHLPrNsm9x6dd+rP+JIsdncxMlwFIyDVeCHIuzECHVxlAz/RFlBKwHSUE60noZBaWJLlGGUQzOIKg0loedkBlMnJRGgY7saQYM/uEyG80K5JQ1eZe9WWCK0rkXqSEHMXN/32uT/vGll8t3YMllWBiS9aZRXHJsCt/PEGVNADa+dIFQxd1dM58RNwLipD9wnhPef/FAcb4/DT+Pg585o/6D7jnX0Dr1HmyhEn9E+OkRHaIKo98UDT3qF/81f+Be+vkF9r6t5i3rh//4LmunaSg==</latexit>
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additional small magnetic field that acts only on site d, which is the defect (or impurity) site, where 

a down-spin has energy −5
$
− 7

$
  and an up-spin has energy +5

$
 + 8

$
. 

Let’s see an example with six sites and two excitations: 

↓↓↑↑↓↓ (down, down, up, up, down, down)  

Since the energy from the homogeneous magnetic field for all spin configurations is just the 

constant -(L-4)h/2, we set it to zero, so that the only part that remains from this part of the 

Hamiltonian is the value +εd/2 or -εd/2, depending on the orientation of the spin on the defect site. 

5.2 Ising interaction 

In order to understand a little about the interactions between the particles, we must 

understand the role of the Jz term and the Jxy term. We note that according to Eq.(13), the couplings 

in our system exist only between neighboring sites, site j and site j+1.  

This subsection is dedicated to the Jz term, which is known as the Ising interaction. Due to 

this term, spin configurations (basis vectors) with neighboring particles that have parallel spins 

have a different energy than configuration states with neighboring particles that have anti-parallel 

spins, as shown in the equations below 

9:
;
𝜎/=𝜎/>#= ⏐↑n↑n+1〉 = +9:

;
⏐↑n↑n+1〉 

9:
;
𝜎/=𝜎/>#= ⏐↓n↓n+1〉 = +9:

;
⏐↓n↓n+1〉 

9:
;
𝜎/=𝜎/>#= ⏐↑n↓n+1〉 = − 9:

;
⏐↑n↓n+1〉 

9:
;
𝜎/=𝜎/>#= ⏐↓n↑n+1〉 = − 9:

;
⏐↓n↑n+1〉 

Two neighboring parallel spins have energy +Jz/4, while anti-parallel spins have energy  –

Jz/4. If Jz is positive, the lowest energy is achieved with anti-parallel spins. In practice, to determine 

the energy of the basis vectors due to the Ising interaction, we count the number of parallel and 



 14 

anti-parallel pairs. As shown below, for an up-spin that neighbors a downspin, a value of –Jz/4 is 

added to the Hamiltonian and for an up-spin neighboring an up-spin or a down-spin neighboring a 

down-spin, a value of +Jz/4 is added to the Hamiltonian 

 

For the state (a) above, the energy due to the Ising interaction is +Jz, since there are 6 

neighboring pairs of parallel spins (including the pair between the first and last site, due to the ring 

shape of our chain) and 2 neighboring pairs of anti-parallel spins, so +6	@A
;

  – 2	@A
;

 = +Jz. This is also 

the case of state (d), while states (b) and (c) have energy 0. 

5.3 Flip-flop term 

 The Jxy term couples different basis vectors, specifically it connects basis vectors that are 

identical except for two neighboring sites, as shown in the equations below 

9BC
;
(𝜎/E𝜎/>#E + 𝜎/

F𝜎/>#
F )⏐↑n↓n+1〉 = +9BC

$
⏐↓n↑n+1〉 

9BC
;
(𝜎/E𝜎/>#E + 𝜎/

F𝜎/>#
F )⏐↓n↑n+1〉 = +9BC

$
⏐↑n↓n+1〉 

The Jxy term is also termed "the flip flop term" because it reverses the spins of the basis if there are 

two opposite spins neighboring each other.  

If, however, the neighboring sites have spins that are in the same direction, then the Jxy term 

does not contribute at all  

9BC
;
(𝜎/E𝜎/>#E + 𝜎/

F𝜎/>#
F )⏐↑n↑n+1〉 = 0 

9BC
;
(𝜎/E𝜎/>#E + 𝜎/

F𝜎/>#
F )⏐↓n↓n+1〉 = 0 
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It preserves the number of up-spins and down-spins found within a system. 

As we will see later, when the initial state of the system is one of the basis vectors, the Jxy 

term is what contributes to its dynamics. 

5.4 Hamiltonian in a matrix form 

Now that I explained the different terms of the Hamiltonian, we can put it in a matrix form. 

For that we need to choose a basis. The basis that we use, as already mentioned, corresponds to 

states where on each site the spin either points up or down in the z-direction. Let us consider the 

case where L=4 and we have 2 up-spins.  

To construct the Hamiltonian matrix, we identify each configuration state with an actual 

vector. For example, the state 1100, which can be written in the “ket” notation as ⎪1100〉, is 

represented by the column vector 

1
0
0
0
0
0

 

the state |1010> is represented by the column vector 

0
1
0
0
0
0

 

and so on. We can also write these states in the “bra” notation 〈1100⏐, which is represented by the 

row vector (100000).  These vectors are orthonormal, that is, they are normalized, 
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〈1100⏐1100〉 = 

100000 .

1
0
0
0
0
0

 = 1 

    (14) 

and orthogonal to each other. 

〈1100⏐1010〉 =  

100000 .

0
1
0
0
0
0

 = 0 

     (15) 

The entries of the matrix are obtained by “sandwiching” the Hamiltonian operator between one 

basis vector to the left in a row form (“bra”) and one basis vector to the right in a column form 

(“ket”). For example, let us look at the “sandwich” between the basis vector 1100 with itself, which 

gives us the element H11 of the Hamiltonian matrix. We write it as 

H11 = 〈1100⏐H⏐1100〉 

From the description of the terms of the Hamiltonian, and assuming that the defect site is the first 

site, d=1, we have that 
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H⏐1100〉= (+ε/2 +0 Jz)⏐1100〉+ (9BC
$

)⏐1010〉 =  

 

= +ε/2

1
0
0
0
0
0

+ 9BC
$

0
1
0
0
0
0

 

so, 

H11 = 〈1100⏐H⏐1100〉 = (10000). [+ε/2	

1
0
0
0
0
0

+ 9EF
$

0
1
0
0
0
0

] = ε/2 

as shown in the Hamiltonian matrix below, 

 1,1,0,0 1,0,1,0 1,0,0,1 0,1,1,0 0,1,0,1 0,0,1,1 

1,1,0,0 H11 = ε/2 𝐻#$ =
𝐽EF
2  𝐻#M = 0 𝐻#; = 0 𝐻#N =

𝐽EF
2  𝐻#O = 0 

1,0,1,0 𝐻$# =
𝐽EF
2  𝐻$$ =

−𝐽= +	ε/2 

𝐻$M =
𝐽EF
2  𝐻$; =

𝐽EF
2  𝐻$N = 0 𝐻$O =

𝐽EF
2  

1,0,0,1 𝐻M#	= 0 𝐻M$ =
𝐽EF
2  𝐻MM = ε/2 𝐻M; = 0 𝐻MN =

𝐽EF
2  𝐻MO = 0 

0,1,1,0 𝐻;#	= 0 𝐻;$ =
𝐽EF
2  𝐻;M = 0 𝐻;;= -ε/2 𝐻;N =

𝐽EF
2  𝐻;O = 0 

0,1,0,1 𝐻N# =
𝐽EF
2  𝐻N$ =	0 𝐻NM =

𝐽EF
2  𝐻N; =

𝐽EF
2  𝐻NN =

−𝐽=-ε/2 

𝐻NO =
𝐽EF
2  

0,0,1,1 𝐻O#	= 0 𝐻O$ =
𝐽EF
2  𝐻OM = 0 𝐻O; = 0 𝐻NO =

𝐽EF
2  𝐻OO= -ε/2 
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For the element H21, we have 

〈1010⏐H⏐1100〉 =(01000). [+ε/2

1
0
0
0
0
0

+ 9EF
$

0
1
0
0
0
0

] = 9EF
$

  . 

 

And for H31 = 〈1001⏐H⏐1100〉 = 0. In this way, we fill out the whole Hamiltonian matrix above. 

We see that the matrix is real and symmetric.  

The diagonal elements in the matrix take on the values of the Jz elements and of the defect 

amplitude, while the off-diagonal elements need only take into consideration the Jxy effects. If we 

choose ε=0, Jz = 1, and Jxy = 1, we get the matrix 

 

Figure 12: Hamiltonian matrix when ε = 0, Jz = 1.0 and Jxy = 1.0, and there are L=4 sites and 2 

up-spins. 

 

6. Diagonalization 

By diagonalizing the Hamiltonian matrix, we obtain the energies accessible to the system 

(the eigenvalues) and the corresponding eigenstates. 

6.1 Jz < Jxy 

Looking back on the Hamiltonian matrix in figure 12, the Jz value is small: 1.0., it is of the 

order of Jxy=1. In this case, one sees that the energies of the basis vectors (the diagonal entries 0 
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and -1) get spread after diagonalization from -2.0 to 1.0. The eigenvalues that arise from this matrix 

are -2.0, -1.0, 1.0, 0.0, 0.0, 0.0 (rounded to one decimal place), as shown in the histogram below 

 

Figure 14: A Histogram of the eigenvalues when Jxy = 1.0 and Jz = 1.0. 

 

The matrix with the eigenvectors of these eigenvalues as columns is  

−0.29 −0.41 0. −0.29 −0.79 −0.21
0.58 −0.41 −0.71 0. 0. 0.
−0.29 −0.41 0. −0.29 0.21 0.79
−0.29 −0.41 0. −0.29 0.58 −0.58
0.58 −0.41 0.71 0. 0. 0.
−0.29 −0.41 0. 0.87 0. 0.

 

 

 (rounded to the nearest second decimal place). Recall that the basis vectors are  

{1, 1, 0, 0}, {1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 1, 1} 

Take, for example, the first eigenstate. It has probability 0.292 to be found in the basis vector 

|1100>, probability 0.582 to be in the basis vector |1010>, etc. 

The eigenvectors reflect the spreading in energy; in each eigenvector, we see contributions 

from all basis vectors, from basis vectors where the up-spins are neighbors and from basis vectors 

where they are not neighbors.  



 20 

We refer to a pair of neighboring up-spins as a bound pair or as a doublon. The reason for 

it will become clear when we discuss the dynamics of the system. 

6.2 Jz >> Jxy 

When the Jz = 10, or just a higher value much larger than Jxy, the following Hamiltonian 

matrix appears, 

 

with the eigenvalues of -10.2, -10.0, 0.2, 0.0, 0.0, 0.0 and the eigenvectors set up by columns in 

the following matrix, 

0.07 0. −0.50 −0.29 −0.21 −0.79
−0.70 −0.71 −0.10 0. 0. 0.
0.07 0. −0.50 −0.29 0.79 0.21
0.07 0. −0.50 −0.29 −0.58 0.58
−0.70 0.71 −0.10 0. 0. 0.
0.07 0. −0.50 0.87 0. 0.

 

(rounded to the nearest second decimal place). We can observe from this set-up of our system, that 

the eigenvalues are very close to the diagonal terms, as shown in the histogram below. 

 

Figure 15: A Histogram of the eigenvalues when Jxy = 1.0 and Jz = 10.0. 
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Additionally, the eigenvector will only have a high probability of having a state with a pair of 

parallel up-spins if its eigenvalue is one which is similar in value to a diagonal term obtained with 

basis vectors that contain a pair of parallel up-spins. For example, the first eigenvector (first 

column above) has eigenvalue -10.2. This value is very close to a diagonal term obtained with 

basis vectors that do not contain a pair of parallel up-spins (do not contain a doublon). Indeed, this 

first eigenvector has probability 0.72 to be found in the basis vector |1010>, probability 0.72 to be 

in the basis vector |0101>, but almost no probability to be found in states with bound pairs, such 

as |1100>. Conversely, the fourth eigenstate, which has eigenvalue 0, is a superposition with high 

contributions only from basis vectors with a doublon. 

6.3 Delocalization vs Localization  

We can conclude from this, that the higher the Jz value, the more defined the eigenvalues 

become, and the closer they are to the values of the diagonal terms of the Hamiltonian matrix. 

Consequently, the eigenvectors become more localized as well and will consist of specific 

configurations.  

 We can measure/quantify the level of delocalization of the eigenstates with the 

Participation Ratio, which is given by, 

𝑃𝑅 =
1
|𝐶𝑘|; 

      (16) 

Where Ck is each coefficient of a given eigenstate. A large value of the PR means that the eigenstate 

is very much delocalized (spread out in the basis vectors), since we have many small Ck’s, that is, 

we have the participation of several different basis vectors. If the eigenstate is localized, then the 

PR is small. The extreme case of localization is when the eigenstate is not a superposition, but 

equals a single basis vector, in which case PR=1.  
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 The graph below plots the average of the participation ratio over all eigenstates as a 

function of the Jz value for a chain with L=6 sites and 2 up-spins. 

 

Figure 16: The Participation Ratio averaged over all eigenstates written in the site-basis vectors 

as a function of the Jz values. 

L = 6, up-spins = 2 and down-spins = 4. Jz values range from 0 to 25 in units of Jxy=1. 

 

The Participation Ratio stabilizes as the Jz value increases (Fig. 16).  

 

7. Dynamics of a System 

 When we talk about dynamics, we are talking about the evolution of a system. In 

order for a system to evolve, it must include: an initial state that it will evolve from (this initial 

state must not be an eigenstate of the system), and it must include time. Our system changes as a 

function of time. The special feature in quantum physics, that all possible states and energies are 

occurring at the same time, is not how our system starts out. Our system begins with one specific 

spin configuration, and no probability of being in another spin configuration; the probability of 

being in a specific spin configuration at time zero is one.  
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As time evolves, our system does not remain in the initial state, rather it acquires the 

probability of being in other basis vectors as well, but this is not random, rather it is dependent on 

a number of factors. 

7.1 Equation for Evolution 

Our initial state is Ѱ[	 and our evolved state is given by  

|Ѱ t >	= 𝑒,._`|Ѱ[ > 

   (17) 

By utilizing the Taylor Expansion, we get, 

𝑒,._`|Ѱ[ >	= 1 − 𝑖𝐻𝑡 −
𝐻𝑡 $

2! +
𝑖𝐻𝑡 M

3! +
𝐻𝑡 ;

4! … ∗ |Ѱ[ >	

 

	 	 	 	 	 	 (18) 

At time t=0, |Ѱ t = 0 >	= |Ѱ[ >. As time passes, the first states to appear are those 

directly connected with the initial state. For example, if |Ѱ[ >= |1100 >,	the first states that will 

contribute to |Ѱ t > are |1010> and |0101>. As more time passes, due to the flip-flop Jxy term in 

the Hamiltonian and the contribution from the higher order terms in the Taylor Expansion, the 

probability for the initial state further decreases and other states appear as well. 

The exact evolution is done as follows: after diagonalizing the Hamiltonian, we have all 

eigenvalues Ek and eigenstates |𝜓g >, with them, Eq.(17) gives us  the evolved state as 

|Ѱ t >= 𝑐g	𝑒,.ij`|𝜓g

k

lm#

> 

where D is the dimension of the Hilbert space (dimension of the Hamiltonian matrix). The evolved 

state above can be written in terms of the basis vectors. 

 For example, in the case of L=4 and 2 up-spins, we have 
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|Ѱ t >	= 	

𝑐#(𝑡)
𝑐$(𝑡)
𝑐M(𝑡)
𝑐;(𝑡)
𝑐N(𝑡)
𝑐O(𝑡)

 

In the equation above |𝑐#(𝑡)|$ is the probability of finding the evolved state at time t in the basis 

vector |1100>, and |𝑐$(𝑡)|$ is the probability of finding the evolved state in the basis vector |1010>, 

etc. 

7.2 Factors affecting the Dynamics 

The evolution of the system can almost be predicted once a few key elements are known: 

• The set up of our initial state; where the up-spins are placed and whether they are placed 

next to each other. 

• The value of the Jz term which affects the strength of the interactions between the particles. 

• The strength and placement of the defect in our system.  

For example, if we start with two up-spins in sites that are neighboring each other, a doublon, there 

is a higher amount of energy in that state than in another basis state in which there is no doublon, 

due to the fact that the up-spins interact with each other. As stated earlier, the strength of the 

interaction of the bounded pairs is dependent on the value of the Jz. If the Jz has a large value, then 

the bounded pairs are heavily bounded to each other, and will stick together as the system evolves. 

If the Jz has a small value, then it is possible for the bounded pairs to separate in the course of the 

evolution. The strength of the interaction affects the evolution of the system, because the system 

will only evolve in a way that will maintain that same amount of energy as the initial state.  

The Jz, however, is not the only thing that determines the energy of the initial state; the 

defect determines the energy of the system as well. While a system with an initial state of a 

bounded pair might maintain its energy by only spreading into other basis vectors with other 
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doublons, it could in principle also maintain its energy by splitting and placing an up-spin on the 

site of the defect, if the defect excess energy is exactly equal to Jz. This is a scenario that we will 

also explore in our analysis of the dynamics. 

7.3 Movement of Doublon 

When Jz is large and we have an initial state that has a doublon, the system will only evolve 

to include states that also have a doublon, consequently, states with the same energy as the initial 

state [6-8].  

A doublon moves in two steps: one virtual step separating the doublon and one other step 

moving the up-spin back next to the other up-spin.  

(a)  (b)             (c) 
↑↑↓↓↓↓  ↑↓↑↓↓↓     ↓↑↑↓↓↓ 

  

 

If (a) is the initial state, the virtual step will be (b), where the two up-spins separate, and the second 

step will be (c), where the two up-spins join together again to become a doublon. 

We now have the necessary tools to quantitatively investigate the dynamics.  

 

8. Evolution of 1D System 

The system we will examine first is a 1D system. In this system we will look at a chain of  

six sites with two up-spins and four down-spins. The evolution of our system is dependent on the 

many factors discussed earlier in this thesis and we will look specifically at the influence of the 

defect, or interaction with the defect site, on the system and the effect that the presence of doublons 

has on the system. 

 

(basis vector that contributes 
to the evolved state) 

(virtual step)             (initial state) 
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8.1 Energy of an Initial State 

Our system will evolve in such a way that will preserve the energy of the initial state of the 

system. Let’s examine the energy of a few initial states in our 1D system with six sites and the 

following parameters: Jxy=1,  Jz = 10, ε = 10. We place our defect on the site d=5. 

Case (a): The initial state is a doublon on sites 1 and 2: 

 

 

⏐1  1  0  0  0  0 〉  

 

 

Using the Hamiltonian described above, we can determine that the energy of this system is @A
$
	 (due 

to the doublon) -  
7
$
	 (due to the down-spin on the site of the defect). 

@A
$
	 -  

7
$ = 5 – 5 = 0 

Only states with energy zero can participate in the evolution of this initial state. This includes, 

for example, the state |011000> and it excludes the state |101000>. 

Case (b): The excitations of the initial state are separated and one of them is on the defect site 

⏐0  1  0  0  1  0 〉  :   

 

 

Only states with energy zero can participate in the evolution of this initial state. This includes, 

for example, the state |100010> and it excludes the state |101000>. One of the main questions we 

plan to address here is whether a state such as state (a) could also evolve into state (b) and vice 

Defect 

Doublon 

Defect 

− @A
$
	 +  

7
$ = -5 + 5 = 0 
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versa. We could expect this to happen by energy conservation, however, as we will show, this 

case is forbidden! 

Case (c): The initial state is a doublon, where one of the excitations is on the defect site 

 

 

⏐0  0  0  1  1  0 〉 :    

 

 

The only other state with the same energy as this initial state is |000011> 

Case (d): The excitations of the initial state are separated and none of them is on the defect site 

⏐1  0  0  1  0  0 〉  :   

 

 

If we take this scenario (d), we can conclude that any configuration that includes, up-spins that are 

not neighboring each other, as well as a down-spin on the site of the defect, will all have the same 

energy of -10. As such, we can expect to find such configurations in the evolution of our system 

with an initial state like the one in (d). This includes, for example, the states |101000>, |010100>, 

etc. 

8.2 Quantum Interference 

If we examine the scenarios above carefully, we notice that there are two different 

configurations, case (a) and case (b) that result in the same energy of the system. This was 

illustrated above, with both cases having an energy of 0. We have specifically chosen the defect 

value and the Jz value so that this might occur and we might observe what happens.  

Defect 

Doublon 

+ @A
$
	 +  

7
$ = 5 + 5 = 10 

Defect 

− @A
$
	 - 

7
$ = -5 - 5 = -10 



 28 

 
Figure 17: The dynamics of a system with an initial state of 110000 where ε = Jz 

 

As observed in Fig. 17, the only states that occur in this system are states where there is a bounded 

pair more than one site away from the site of the defect. Though the energy would be the same if 

we had a split pair with one up-spin on the site of the defect, this does not happen in the evolution 

of the system. The reason this does not happen, is due to the fact that there is quantum interference. 

 If we examine the state ⎜011000〉 that does appear in the dynamics in Fig. 17, keeping with 

the rules of dynamics that we stated above, that a bounded pair moves in a two-step process, there 

are two configurations that can theoretically occur by conservation of energy as the two excitations 

move to the right: 

Initial state         Step 1       Step 2 

 

↓↑↑↓↓↓ 

 

On the line (A) above, we recovered a doublon after two steps and on the line (B), one of the 

excitations moved to the defect site. Both cases maintain the energy of the initial state. However, 

due to the fact that there are two possible ways for the configuration ↓↑↑↓↓↓  to evolve, the two 

↓↑↓↑↓↓ ↓↓↑↑↓↓                             (A) 

↓↑↓↑↓↓ ↓↑↓↓↑↓↓                           (B) 
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possible configurations interfere destructively with each other and neither occurs within the 

dynamics of the system. 

 After examining this unique case, we can now move on to discussing the dynamics of the 

other initial states in our system. 

8.3 Dynamics due to different Initial States 

1. When our initial state is a bounded pair right next to the site of the defect (on site 5) 

⎜001100〉, these are our results 

(a)            (b) 

 
   (c) 

 
Figure 19: These figures represent the dynamics that occur as a result of a doublon being 

adjacent to the site of the defect. (a) shows the sum of participation of the bounded pairs 

touching our defect, (b) shows the unbounded pair with one upspin on the defect, and (c) 

illustrates all the participating bases in the dynamics. 
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In this scenario the system evolves such that the only bases that appear in the system will 

be bases that maintain the same energy as the initial state.  

⎜001100〉: 

 

⎜010010〉: 

As such, our system will evolve and have the probability of having states from either 

category: bounded pair not on the defect, but right next to it, and unbounded pair with one 

excitation on the defect. The bounded pair not on the defect will have to be next to the defect 

because we are keeping with the "one hop" idea. Starting with the state |001100>, with a single 

hop, the excitation falls on the defect site: |001010>. As such the up-spin next to the defect will 

move one site over and be on the defect, separating itself from the other up-spin. This case is 

different from the previous one in Sec.8.2, where the motion of the bound pair necessarily required 

two steps to find another state with its energy.  

2. When our initial state is a bounded pair on the defect |001100〉, these are our results 

(a)     (b) 

  
Figure 20: in (a) the only participating configurations in the dynamics are ones with a 

doublon that has one up-spin on the site of the defect (site 5). In (b) the participating 

configurations in this dynamics are clearly exposed. 

			+ @A
$
	 -  

7
$ = 5 - 5 = 0 

− @A
$
	 +  

7
$ = -5 + 5 = 0 
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This is the case (c) described in Sec.8.1. In this scenario, the only way for the system to 

maintain its energy is to evolve into other bounded pairs on the defect. An evolution to a state that 

includes an unbounded pair, would not have the same energy, and an evolution to a state not on 

the defect, would also not maintain the energy of our system. 

3. When our initial is an unbounded pair on defect, these are our results 

 (a)      (b) 

 

Figure 21: These figures represent the dynamics that occur as a result of the unbounded 

pair having one up-spin on the site of the defect. (a) shows the sum of participation of an 

unbounded pair with one up-spin on the defect, (b) shows the sum of participation of the 

bounded pairs touching our defect. 

 

These graphs reflect the evolution of our system due to an initial state with an unbounded 

pair on defect. In this scenario the system evolves such that the only bases that appear in the system 

will be bases that maintain the same energy as the initial state. This results in the same scenario 

discussed earlier in the case (1) above where the initial state was the bounded pair adjacent to the 

defect. 
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4. When our initial state is an unbounded pair with neither up-spins on the defect, these 

are our results 

(a)      (b) 

 
Figure 22: in (a) the only participating configurations in the dynamics are ones with an 

unbounded pair where neither up-spin is on the site of the defect (on site 5). In (b) the 

participating configurations in this dynamics are clearly exposed. 

 

This is the case (d) discussed in Sec.8.1. In this scenario, the only way for the system to 

maintain its energy is to evolve into other unbounded pairs not on the defect. An evolution to a 

state that included a bounded pair, would not have the same energy, and an evolution to a state on 

the defect, would also not maintain the energy of our system. 

Now that we have discussed the dynamics of our system in a 1D chain, let’s discuss the 

two-dimensional (2D) plane. 

 

9. Two-dimensional System 

 In this section, we will discuss the structure of a 2D system as well as the dynamics of such 

a system and how it compares to a 1D system. 
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9.1 Description of the System 

The 2D system behaves similarly to the 1D system: the first and last site connect, forming 

a ring. With a 2D system, the first and last site of every column connect as well as the first and last 

site of every row. Ultimately, this forms a donut-like shape, as displayed in the image below on 

the right Fig.23(b). It’s important to note in the donut diagram that the the inner circle does not 

correspond to a stronger interaction, despite the closer proximity between the sites.  

(a)      (b) 

 

Figure 23: The structure of the 2D system is portrayed in (a) as the connection between the first 

and last sites in rows as well as columns. (b) presents a more visual representation, in the shape 

of a donut. 

 

 Much as we denoted the 1D system in a chain of 1’s and 0’s, with the 1’s representing the 

up-spins and the 0’s the down-spins, we can represent the 2D system in a matrix form with 1’s and 

0’s as well. 
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 The up-spins are free to move to their right, left, up, and down, with the full flexibility of 

the donut-like shape of the 2D system. 

9.2 Evolution of the 2D System 

The main question we need to examine, is whether or not the doublons are as robust in 

the 2D system as they are in the 1D system. In the 1D system, the doublons (away from the 

defect site by at least one site) do not break, rather the system evolves to maintain the structure 

of the two up-spins neighboring each other. Can the same thing be said for the 2D system where 

there are many more channels in which the up-spins can move? 

 By taking one example with one type of initial state, we can sufficiently explore this 

question and find the answer. 

If our initial state is , with the site of the defect being the top left corner, then our 

configuration would be one of a bounded pair more than one site away from the site of the defect. 

If our doublon is indeed so robust, we would expect the system to evolve in such a way that we 

would only find configurations with a bounded pair more than one site away from the site of the 

defect. 
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(a)             (b) 

 
Figure 24: In (a) we observe the evolution of the system and the bases that clearly participate in 

its evolution. On the right, (b) shows the configurations of each of the participating bases. 

 

 As shown in Fig. 24, the bases that appear within the dynamics are the bases with a  

configuration of a doublon more than one site away from the site of the defect. From this we can 

conclude that the 2D system behaves much like the 1D system. The doublons in the 2D system are 

just as robust as the doublons in the 1D system, despite the extra channels for movement. 

Observing the graph carefully in Fig.24(a) will reveal that there appears to be some other 

configurations participating in the dynamics of the system as well. This is noise due to the fact that 

our system is of such a small size. The many channels in such small quarters, give rise to some 

noise. We tested larger systems with more sites, and in those systems the noise disappears entirely 

and the 2D system behaves just like the 1D system. 

 My analysis of the 2D system was extensive. We investigated several initial states, but the 

example above summarizes well our results. 
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10. Conclusions: 

In this study we examined two different types of systems: a one-dimensional chain and a 

two-dimensional plane. We used the spin ½ model to represent the particles and sites in our system. 

We examined the influence of the Jz Ising interaction between neighboring sites, as well as the 

effect the defect site had on our system. After observing these factors in a static system, we then 

observed our 1D system as it evolved throughout time. We specifically looked at the configurations 

with two up-spins neighboring each other (doublons) to see if these doublons persist throughout 

the evolution of our system. We introduced the defect site in order to allow for other configurations 

without doublons to have the same energy as configurations with a doublon to study the robustness 

of the doublon: was the persistence of the doublon configuration due solely to energy 

conservation? Or did the doublon have a unique robustness that endured throughout evolution? 

We discovered that while energy conservation is, of course, required in order to evolve into other 

configurations with a doublon, it is not sufficient to break the doublon – the doublon is robust.  

After concluding this about 1D systems, we set out to see if the same quality exists in 2D 

systems. We had our doubts: the 2D system has many more avenues in which the up-spins could 

move; we would expect that due to these extra channels the doublon would split. We were 

surprised to note that, in fact, the doublon behaved precisely as it did in the 1D system and thus 

we concluded – the doublon is robust in the 2D system as well. 

While these experiments were done computationally, these results could be tested in a lab 

in experiments with cold atoms in optical lattices, such as those where the doublons were already 

studied. 
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