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angular momentum
electric charge
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Conservation of =<

Conservation of energy
To study collisions =< +

Conservation of linear momentum
\

Linear momentum:
(VECTOR) Sl unit: kg.m/s

p(faster car)>p(slower car)
p(heavy truck)>p(light car) — both at the same speed




Newton’s 2" Law
]

A force is needed to change the momentum <

-~

.

increase it
decrease it
change its direction

Newton’s 2" l[aw — originally in terms of momentum:

Zﬁzmc_i@

Ap _ m(‘jz _‘71)
At At

S F -

Ap
At

(applies even when the
mass changes)

= ma

Ex.7-1 A 0.060 kg ball leaves the racket with v=55m/s. It is in contact with the
racket for 4ms. What is the average force on the ball? Compare it with the

weight of a 60-kg person.

F~800N




Newton’s 2" Law
]

Newton’s 2" l[aw — originally in terms of momentum:

-
" The time rate of change of the momentum of a particle is equal to the net force

acting on the particle and is in the direction of that force.

e
F. = le (9-23)

. dF d dv
F.=—= V) = m — = mad.
et dt dt (mv) = m a M

\. CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time 7 for a particle mov-
ing along an axis. A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force, greatest first. (b) In which region
is the particle slowing?




Conservation of Momentum H”

If the system is ISOLATED (the net external force on the system is zero)
then the sum of momenta before and after a collision is the same.

A\ WlA VA WlB VB(\
Head-on collision: B

Ap = FAt
Apy=my(V'y—vy) = BAAt
Ap,=m,(V',—v,)= FABAt =—Fy,At

m,(V',—v,)=—my(V'y;—V;)




Isolated System
. —

In the real world:
external forces are
friction, gravity, etc

|solated system = net external force is zero,
only internal forces are significant

Examples:
system: rock falling — momentum is not conserverd
(external force = gravity)
system: rock + Earth — momentum is conserverd

\. CHECKPOINT 6

An 1nitially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What 1s the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (c) What is the direction of the momentum
of the second piece?




Isolated System
. —

Collision in one dimension

Ex.: A 10,000-kg railroad car A traveling at 24.0 m/s strikes an identical
car B at rest. If they lock together, what is their common speed afterwards?

\WaA=240m/s ¢ vg=0
e (a[ l‘esl)

A B — X
| m,
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(a) Before collision mA + mB

'
m,>>m, =>Vv=vy,

o TR e e e Ew 5 > e T e AP = - -
(b) After collision n, << ng =v'=0
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Momentum conservation works for a rocket as long as we consider the rocket
and its fuel to be one system, and account for the mass loss of the rocket.

In the reference frame of the rocket: (a) e E—

When the fuel burns and gases are expelled:
the rocket gains momentum, (b)

it can accelerate in empty space.

Poas Procket
entice Inc

gas
Copyright © 2005 Pearson Prentice Hal

Ex. Calculate the recoil velocity of a 5.0-kg rifle that shoots a 0.020-kg
bullet at a speed of 620 m/s

——SEE

— X
' T —
(a) Before shooting (at rest) VR —/ 2.5m/s

(b) After shooting
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One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity v; of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed v, between the hauler and the mod-
ule is 500 km/h. What then is the velocity vV of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler—module system is closed and isolated,
its total linear momentum is conserved; that is,

=1t

(9-44)

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

- V. Vs
— s <
—>
_—vy— \_ P
Hauler

0.20M 0.80M

Cargo module

(a) (b)

Fig. 9-12 (a) A space hauler, with a cargo module, moving at
initial velocity ¥;. (b) The hauler has ejected the cargo module.
Now the velocities relative to the Sun are Vg for the module and
V s for the hauler.

where the subscripts i and f refer to values before and after
the ejection, respectively.

Calculations: Because the motion is along a single axis, we
can write momenta and velocities in terms of their x compo-
nents, using a sign to indicate direction. Before the ejection,

we have
P, = My, (9-45)

Let vy be the velocity of the ejected module relative to the
Sun. The total linear momentum of the system after the ejec-
tion is then

P;= (0.20M)vyy5 + (0.80M)vs,

where the first term on the right is the linear momentum of the
module and the second term is that of the hauler.

We do not know the velocity v,,s of the module relative
to the Sun, but we can relate it to the known velocities with

(9-46)

velocity of velocity of velocity of

hauler relative | = | hauler relative | T | module relative |.
to Sun to module to Sun

In symbols, this gives us

Vis = Ve T Vs (9-47)
or Vms = Vus = Vel
Substituting this expression for vy into Eq. 9-46, and then
substituting Eqgs. 9-45 and 9-46 into Eq. 9-44, we find

Mv; = 020M(vys — via) + 0.80Mvys,
which gives us
vys = vi + 0.20v,,
vys = 2100 km/h + (0.20)(500 km/h)

= 2200 km/h. (Answer)




Examples

Two-dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a
coconut of mass M, initially at rest on a frictionless floor,
blows the coconut into three pieces that slide across the floor.
An overhead view is shown in Fig. 9-13a. Piece C, with mass

0.30M, has final speed vy = 5.0 m/s.
(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form a
closed system, (2) the explosion forces are internal to that

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

N
va \
A

—

fo

200
VB

(a)

system, and (3) no net external force acts on the system.
Therefore, the linear momentum of the system is conserved.

Calculations: To get started, we superimpose an xy coordi-
nate system as shown in Fig. 9-13b, with the negative direction
of the x axis coinciding with the direction of V4. The x axis is at
80° with the direction of ;- and 50° with the direction of V.

Linear momentum is conserved separately along each
axis. Let’s use the y axis and write

iy

(9-48)

where subscript i refers to the initial value (before the explo-
sion),and subscript y refers to the y component of P, or P;.

NOTE the choice of
reference frame!!




The component P;, of the initial linear momentum is
zero, because the coconut is initially at rest. To get an ex-
pression for Py, we find the y component of the final linear

momentum of each piece, using the y-component version of
Eq.9-22 (p, = mv)):

Pay = 0,
Py = —0.20Mvg, = —0.20Mv,; sin 50°,
pr y — 0-30vaCv = 0.30MVfC sin 80°.

(Note that p;, =0 because of our choice of axes.)
Equation 9-48 can now be written as

Pi_v = Pf_v = Pfay + PrBy + Prcy-

The explosive separation

can change the momentum

of the parts but not the

momentum of the system. 'y

100° ,
v, Ve
XL/HOO
v,

'B

(a)
Fig. 9-13 Three pieces of an exploded coconut move off in three
directions along a frictionless floor. (a) An overhead view of the
event. (b) The same with a two-dimensional axis system imposed.

Then, with Vic = 5.0 m/s, we have
0 =0 — 0.20Mvgg sin 50° + (0.30M)(5.0 m/s) sin 80°,
from which we find
v = 9.64 m/s ~ 9.6 m/s.
(b) What is the speed of piece A?

(Answer)

Calculations: Because linear momentum is also conserved
along the x axis, we have

Py, = Py, (9-49)

where P, = 0 because the coconut is initially at rest. To
get Pg, we find the x components of the final momenta,
using the fact that piece A must have a mass of 0.50M
(=M —0.20M — 0.30M):

Piax = _O-SOMVM,

Pmx = 020Mvg, = 0.20Mvgg cos 50°,

pr,X = 030A’1VICY = O3OMV}'C cos 80°.

Equation 9-49 can now be written as

Py = P = ppax + Pmx + Prcx
Then, with vy = 5.0 m/s and vig = 9.64 m/s, we have
= —0.50Mv;, + 0.20M(9.64 m/s) cos 50°
+ 0.30M (5.0 m/s) cos 80°,

from which we find

via = 3.0 m/s. (Answer)




Cons. of Energy and Momentum —

No net external force: conservation of momentum

No loss of energy: conservation of kinetic energy --- ELASTIC collision
(like heat or sound)
| O |

2 2 2

Collisions of atoms and molecules are often elastic
Collisions of billiard balls are close to it

INELASTIC collision: kinetic energy is not conserved, part of it is lost into other

forms
1 2 1 2 1 1 12
EmAvA +5vaB :EmAvA+5vaB+thermal and others

NOTE: TOTAL energy is always conserved !




1
2

m,v,—v,)=-my(vy —v'y)

! ! 1 ! !
—m,(v, =V, ), +V, ) =—=my(vy = V' )y + V')
2

Elastic Collision - 1D
]

: . = = = =1
Conservation of momentum: My, +mgv, =m,\yv +myv,

1 1 1
Conservation of kinetic energy: EmAvj + —vaé =

2 2

Simplification valid only for head-on elastic collision
Magnitude of relative speed of the two objects after the collision = before the collision,
but opposite sign ---- no matter what the masses are

1 1 12 1 2 1 12 1 2 12 1 2 12

—my, ——m,\V', =——m,v, +—m,v —m, (v, =V )=——m,(v; —V

2 A" A 2 A" A 2 B"B 2 B” B 2 A( A A ) 2 B( B B

—

| !

Vv =—(vV' =)



e o | | 1

2 2 2

vy—vg=—(V,—v'p)

Ex. 7-7 A billiard ball A of mass m with speed v collides head-on with ball B
of equal mass at rest. What are the speeds of the two balls after the collision,
assuming it is elastic?

v, =0, viy=v

Ex. 7-8 A proton of mass 1.01 u (unified atomic mass units) traveling with a
speed of 3.60x10"4 m/s has an elastic head-on collision with a helium nucleus,
(mass = 4.00 u) initially at rest. What are the velocities of the proton and helium
nucleus after the collision? \

Ve =1.45x10"m/s  proton reverses its direction

Vo= -215%x10%m/ s after collision
» :




Examples

Elastic collision, two pendulums

Two metal spheres, suspended by vertical cords, initially just
touch, as shown in Fig. 9-20. Sphere 1, with mass
my; = 30 g, is pulled to the left to height A, = 8.0 cm, and
then released from rest. After swinging down, it undergoes
an elastic collision with sphere 2, whose mass m, =75 g.
What is the velocity vy of sphere 1 just after the collision?

KEY IDEA

We can split this complicated motion into two steps that we
can analyze separately: (1) the descent of sphere 1 (in which
mechanical energy is conserved) and (2) the two-sphere col-
lision (in which momentum is also conserved).

Step 1: As sphere 1 swings down, the mechanical energy of
the sphere—Earth system is conserved. (The mechanical en-
ergy is not changed by the force of the cord on sphere 1 be-
cause that force is always directed perpendicular to the
sphere’s direction of travel.)

Calculation: Let’s take the lowest level as our reference
level of zero gravitational potential energy. Then the kinetic
energy of sphere 1 at the lowest level must equal the gravi-
tational potential energy of the system when sphere 1 is at

height ;. Thus,

1 2 _
MV = mgh,,

which we solve for the speed v;; of sphere 1 just before the
collision:

vii = V2ghy = V/(2)(9.8 m/s?)(0.080 m)
= 1.252 mps.

Step 2: Here we can make two assumptions in addition to
the assumption that the collision is elastic. First, we can as-
sume that the collision is one-dimensional because the motions
of the spheres are approximately horizontal from just before
the collision to just after it. Second, because the collision is so

brief, we can assume that the two-sphere system is closed and
isolated. This means that the total linear momentum of the sys-
tem is conserved.

Calculation: Thus, we can use Eq. 9-67 to find the velocity of
sphere 1 just after the collision:

1f m, + m, 1i
0.030 kg — 0.075 kg

~ 0.030kg + 0.075 kg
= —0.537 m/s = —0.54 m/s.

(1.252 m/s)

(Answer)

The minus sign tells us that sphere 1 moves to the left just
after the collision.

Ball 1 swings down and
collides with ball 2, which
then swings upward. If the
collision is elastic, no
mechanical energy is lost.

T
R} ERR SN R VAN LR i HR S

Fig. 9-20 Two metal spheres suspended by cords just touch
when they are at rest. Sphere 1, with mass m, is pulled to the left to
height h; and then released.




Inelastic collision:

COMPLETELY inelastic collision: two object stick together.

m
o e— M

V[w: ()

(a)

Copyright © 2005 Pearson Prentice Hall, Inc.

Inelastic Collision —

kinetic energy is not conserved,
but total energy and total vector momentum are

Ex. 7-9: A 10,000-kg railroad car A traveling at 24.0 m/s
strikes an identical car B at rest and they lock together.
Calculate how much of the initial kinetic energy is
transformed to thermal or other forms of energy. (after the
collision both cars are moving at 12 m/s — see Ex. 7-3)

1.44 x 1076 J
Ex. 7-10 Ballistic pendulum. A projectile of mass m is
fired into a large block of mass M, which is suspended
like a pendulum. As a result of the collision, the pendulum
swings up to a maximum height h. What is the relationship
between the initial horizontal speed of the projectile, v,
and the maximum height h?

: : + M
(gravity neglected during the [k
short collision time) m

\2gh




Collision in 2D
]

Conservation of momentum: If the collision is elastic
(we need the angles)

+p,=p, +p' 1, 1 5 1
pr pr pr pr _mAVA+_vaB__

P4y +@ = p'Ay +p'By

2 2 2

—~—
Three independent equations — we can find 3 unknowns

Ex.7-11 A more simple example,
where there are only 2 unknowns:

A billiard ball A at speed 3.0 m/s strikes
an equal-mass ball B initially at rest. The
angles are shown in the figure. What are
the speeds of the two balls after the
collision?

'

Vv, =v,=2.1m/s




Center of Mass
]

The motion of extended objects or a system with many objects may be
complicated,
but the CENTER OF MASS (CM) moves as a point particle.

Copyright © 2005 Pearson Prentice Hall, Inc.

The general motion of an object can be considered as the sum of the
translational motion of the CM, plus rotational, vibrational, or other forms of
motion about the CM.




Center of Mass — 2 objects H”

For two particles, the center of mass lies closer to the one with the most mass:

MaXa + MpXp MaXa T WpXp

ma + mg M

where M is the total mass.




CM - more than 2 objects
‘ -

If there are more than two particles
m, X, +myXx, +m X, +...
Xem =
M
where M is the total mass of all the particles

Ex. 7-12 Three people of roughly equal masses m on a lightweight banana
boat sit along the x axis at the positions xA=1.0m, x8=5.0m, and xC=6.0m,
as in the figure. Find the CM.

xcM=4.0m

The coordinates of the CM
depend on the reference frame,
but the physical location of

the CM is independent of that
choice

The CM may lie outside the object
Ex: donuts, jumpers over bars




CM and Translational Motion —

The total momentum of a system of particles is equal to

the product of the total mass and the velocity of the center of mass.

MVCM =m,V,+mgv, +m.v,

The sum of all the forces acting on a system is equal to
the total mass of the system multiplied by

the acceleration of the center of mass:

F

net

= Ma,,,




