Potential Energy —

Potential energy — energy that is stored on a object. When it is released, it
leads to the increase of kinetic energy and therefore to work.

Potential energy — energy associated with forces that depend on position
or configuration of an object with respect to the surroundings.

One job of physics is to identify the different types of energy in the
world, especially those that are of common importance. One general type of en-
ergy is potential energy U. Technically, potential energy is energy that can be as-
sociated with the configuration (arrangement) of a system of objects that exert
forces on one another.

An example might help better than the definition: A bungee-cord jumper plunges
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the
jumper. The force between the objects is the gravitational force. The configuration
of the system changes (the separation between the jumper and Earth decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion
and increase in Kinetic energy by defining a gravitational potential energy U. This

Gravitational potential energy, elastic potential energy, chemical potential
energy.




Potential Energy —

Potential energy — energy associated with forces that depend on position
or configuration of an object with respect to the surroundings

Examples: Gravitational potential energy (object at a certain height)
Elastic potential energy (spring)

Gravitational potential energy:

1) Hand does work on the brick
(Gresied exerted force: Fqy

by hand)

ext

d A FC\[

=F,dcos0=mg(y, —y,) =mgh

2) Gravity does work on the brick
(against the motion), Fg

W, =F.dcosl80° =—-mg(y, —y,)=—mgh

U arav — mgy gravitational potential energy




Gravitational Potential Energy H”

U — The higher an object is above the ground the more
grav mgy gravitational potential energy it has.

Work done by gravity as the object moves from point 1 to 2.

AU = — Way Woray = - mg(y2-ys) = -(Ux-U,)
Work done by an external force to move the object from point 1 to 2 (a=0)

Wexe = mg(yo-y4) = (Ux-U,)

v: =2gh

At the top, if the object is released,
the potential energy is transformed into kinetic energy — — > = m gh

2




Reference point for zero gravitational potential energy is arbitrary

Ex. A 1000-kg roller-coaster car moves from point 1 to point 2 and then

to point 3. (a) What is the gravitational potential energy at 2 and 3 RELATIVE
to point 1? That is, take y=0 at point 1. (b) What is the change in potential
energy when the car goes from point 2 to point 3?7 (c ) Repeat parts (a) and

(b) but take the reference point (y=0) to be at point 3.
U,=98x104J U3z=-1.5x10%J
U3- Uz =-25x10°J

U2=-2.5X105J U3:O
U3- U2=-2.5X 105 J

What is physically important is the CHANGE in potential energy, because
this is what is related to work and this is what can be measured.




Potential Energy H”

For either rise or fall, the change AU in gravitational potential energy is
defined as being equal to the negative of the work done on the tomato by the
gravitational force. Using the general symbol W for work, we write this as

AU = —W. (8-1)

W = JinF(x) dx. (8-5) AU = —f’.fF(x) dx. (8-6)

Gravitational Potential Energy

y

AU = —fyf(—mg) dy = mg ffdy - mg[y}yf, (8-7)

Vi Vi Vi

AU = mg(y,— y;) = mg Ay.




Elastic Potential Energy —

Each form of potential energy is associated with a particular force.

The change in potential energy is the work required of an external force to move
the object without acceleration between two points.

Elastic materials:

x=0

Force by the spring on the hand
(Hooke's law)

X —™

«:(-—--—-» FP

Fs Work done BY the spring Welastic = - (U2'U1)

Xf Xg ‘ Xr
AU = —J (—kx) dx = kf xdx = %k[xz] :

— 1,2 17
AU = 1kx? — L2,

Reference point for

L 1 2 zero potential
Elastic potential energy U el — § kx energy is the spring’s
natural position



-

In the examples of potential energy: object has the POTENTIAL to do work

even though it is not actually doing it.
Energy can be STORED in the form of potential energy.

There is a single formula for kinetic energy, but the mathematical form
for the potential energy depends on the force involved.




Conservative vs Nonconservative F
Negative Positive
work done work done
by the by the
gravitational gravitational

In a situation in which W, = —W, is always true, the other type of energy is " o
a potential energy and the force is said to be a conservative force. As you might
suspect, the gravitational force and the spring force are both conservative (since @
otherwise we could not have spoken of gravitational potential energy and elastic
potential energy, as we did previously).
A force that is not conservative is called a nonconservative force. The kinetic
frictional force and drag force are nonconservative. For an example, let us send
a block sliding across a floor that is not frictionless. During the sliding, a kinetic
frictional force from the floor slows the block by transferring energy from its ki-
netic energy to a type of energy called thermal energy (which has to do with the
random motions of atoms and molecules). We know from experiment that this
energy transfer cannot be reversed (thermal energy cannot be transferred back
to kinetic energy of the block by the kinetic frictional force). Thus, although we
have a system (made up of the block and the floor), a force that acts between
parts of the system, and a transfer of energy by the force, the force is not conserv-
ative. Therefore, thermal energy is not a potential energy.




Path Independence
e —

Conservative Forces:
forces for which the work done does NOT depend on the PATH taken,

but only on the final and initial position (Ex.: gravity, elastic force).
An object that starts at a point and returns to the same point under the action of a conservative force
has no net work done on it.

1 b The work done by a conservative force on a particle moving between two points does
The force is conservative.  not depend on the path taken by the particle.

Any choice of path between
the points gives the same Wopa + Wyas = 0,
amount of work.

Wab,l - _Wba.z-

And a round trip gives

a total work of zero. The net work done by a conservative force on a particle moving around any closed
path is zero.

()

Nonconservative Forces:
forces for which the work done DEPENDS on the PATH taken
(Ex.: friction, force exerted by a person, tension in a rope).




Equivalent paths for calculating work, slippery cheese

Figure 8-5a shows a 2.0 kg block of slippery cheese that slides
along a frictionless track from point a to point b. The cheese
travels through a total distance of 2.0 m along the track, and a
net vertical distance of 0.80 m. How much work is done on the
cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (W, =
mgd cos ¢). The reason is that the angle ¢ between the direc-

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

(@) (5

Fig. 8-5 (a) A block of cheese slides along a frictionless track from
point a to point b. (b) Finding the work done on the cheese by the
gravitational force is easier along the dashed path than along the ac-
tual path taken by the cheese; the result is the same for both paths.

tions of the gravitational force F; and the displacement d
varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate ¢ along it, the
calculation could be very difficult.) (2) Because F;, is a conser-
vative force, we can find the work by choosing some other
path between a and b—one that makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle ¢ is a constant 90°. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work W, done there is

W), = mgd cos 90° = 0

Along the vertical segment, the displacement d is 0.80 m
and, with E and d both downward, the angle ¢ is a constant
0°. Thus, Eq. 7-12 gives us, for the work W, done along the
vertical part of the dashed path,

W, = mgd cos 0°
= (2.0 kg)(9.8 m/s?)(0.80 m)(1) = 15.7 J.

The total work done on the cheese by i; as the cheese
moves from point a to point b along the dashed path is then

W=W,+W,=0+157J=16J. (Answer)

This is also the work done as the cheese slides along the
track from a to b.




Work-Enerqgy Principle
gy P —

Suppose several forces, conservative and nonconservative, act on an object
WC — work done by conservative forces
WNC — work done by nonconservative forces

Wnet — WC + WNC

W ..=AK

net

We +Wie =AK
Remember that the work done BY a
WNC = AK — WC conservative force (gravitational, elastic) is

We =—-AU

Wyeo = AK + AU

Work done by nonconservative forces acting on an object is equal
to the total change in kinetic and potential energies.




Conservation of Mechanical Energy H”

If all forces acting on an object are conservative: Wnc = AK + AU =0
AK + AU =0
(Ko — K1)+ (Us — Uy) = 0

Define a quantity E called total MECHANICAL energy: F/, o, = I + U

Ko+ Uz = K1+ Uy

E, =E, = Const

Principle of conservation of mechanical energy:

If only conservative forces are acting, the total
mechanical energy is conserved




Problems: Cons. of Mechanical Energ —

Gravitational Potential -Kl + Ul — K2 + U2
Energy

my; my;
Tmgy, = > Tmgy,

2

Ex. Arockat 3.0 m from the ground is dropped. Calculate the rock’s
speed when it has fallen to 1.0 m above the ground.

v=6.3 m/s

Ex. Assume that a roller-coaster at 40m above the ground starts from
rest. Calculate (a) the speed it has at the bottom of the hill; (b) at what height it
will have half this speed. Take y=0 at the bottom of the hill.

(a) V2=28 m/s

b) y2=30 m




Problems: Cons. of Mechanical Energ —

Elastic Potential -Kl + Ul — K2 + UQ
Energy 1 1 1 1

—mv} +—kx! = —mv; +—kx;
2 2 2 2

Ex. Adart of mass 0.100 kg is pressed against the spring of a toy dart
gun. The spring (with spring stiffness constant k=250N/m) is compressed

6.0 cm and released. If the dart detaches from the spring when the spring

reaches its natural length (x=0), what speed does the dart acquire?




Problems: Cons. of Mechanical Energ —

Ex. Aball of mass m=2.60 kg, starting from rest, falls a vertical

distance h=55.0 cm before striking a vertical coiled spring, which it
compresses an amount Y=15.0 cm. Determine the spring stiffness constant
of the spring. Assume the spring has negligible mass and ignore air

resistance.

2mg(h+Y)

k =1590N /m

Copyright © 2005 Pearson Prentice Hall, Inc.




Problems:

Conservation of mechanical energy, water slide

In Fig. 8-8, a child of mass m is released from rest at the top
of a water slide, at height 2 = 8.5 m above the bottom of the
slide. Assuming that the slide is frictionless because of the
water on it, find the child’s speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her ac-
celeration along the slide as we might have in earlier chap-
ters because we do not know the slope (angle) of the slide.
However, because that speed is related to her kinetic en-
ergy, perhaps we can use the principle of conservation of
mechanical energy to get the speed. Then we would not
need to know the slope. (2) Mechanical energy is conserved
in a system if the system is isolated and if only conservative
forces cause energy transfers within it. Let’s check.

Forces: Two forces act on the child. The gravitational
force, a conservative force, does work on her. The normal
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicular
to the direction in which the child moves.

The total mechanical
energy at the top
is equal to the total

at the bottom. j

. 8-8 A child slides down a water slide as she descends a height A.

h

System: Because the only force doing work on the child
is the gravitational force, we choose the child—Earth system
as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in
an isolated system, so we can use the principle of conserva-
tion of mechanical energy.

Calculations: Let the mechanical energy be E, .., when
the child is at the top of the slide and E, .., when she is at
the bottom. Then the conservation principle tells us

Eech = Emecy- (8-19)
To show both kinds of mechanical energy, we have
K,+U,=K,+ U, (8-20)
or %mv,z, + mgy, = %mv,2 + mgy;.
Dividing by m and rearranging yield
vh = vi + 28(3 — ).
Puttingv, = 0and y, — y, = h leads to
vy = V2gh = V/(2)(9.8 m/s%)(8.5 m)
= 13 m/s. (Answer)

This is the same speed that the child would reach if she fell
8.5 m vertically. On an actual slide, some frictional forces
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly
with Newton’s laws, using conservation of mechanical en-
ergy makes the solution much easier. However, if we were
asked to find the time taken for the child to reach the bot-
tom of the slide, energy methods would be of no use; we
would need to know the shape of the slide, and we would
have a difficult problem.




Conservation of Energy —

Electric energy, nuclear energy, thermal energy, chemical energy.

In atomic physics, they are seen as kinetic or potential energy at the atomic
level.

Thermal energy — kinetic energy of moving molecules

Energy stored in food and fuel — energy stored in the chemical bounds.

Work is done when energy is transferred from one object to another.
(spring to ball, water at the top of a damn to turbine blades, person to cart, etc)

Accounting for all forms of energy, we find that the total energy neither
increases nor decreases.

Energy as a whole is conserved.




x —

Frictional forces reduce the total mechanical energy,

but NOT the total energy
They are called dissipative forces.

Where do kinetic and potential energies go? — they become heat

Wye = AK + AU = —Ffrd

1 1
—-F,d =Emv2 —Emvf +mgy, —mgy,

1 1
Emvf +mgy, =§mv22 +mgy, + F,d

Example: in the roller-coaster the initial total energy will be equal to K+P at any
subsequent point along the path PLUS the thermal energy produced.




Ex. Assume that a roller-coaster of 1000 kg at 40m above the ground starts
from rest. It reaches only 25m at the second hill before coming to a
momentary stop. It traveled a total distance of 400 m. Estimate the average

friction force.
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Energy, friction, spring, and tamales

In Fig. 8-17, a 2.0 kg package of tamales slides along a floor
with speed v; = 4.0 m/s. It then runs into and compresses a
spring, until the package momentarily stops. Its path to the
initially relaxed spring is frictionless, but as it compresses
the spring, a kinetic frictional force from the floor, of mag-
nitude 15 N, acts on the package. If k¥ = 10 000 N/m, by what
distance d is the spring compressed when the package stops?

KEY IDEAS

We need to examine all the forces and then to determine
whether we have an isolated system or a system on which an
external force is doing work.

Forces: The normal force on the package from the floor
does no work on the package because the direction of this
force is always perpendicular to the direction of the package’s
displacement. For the same reason, the gravitational force on
the package does no work. As the spring is compressed,
however, a spring force does work on the package, transfer-
ring energy to elastic potential energy of the spring. The
spring force also pushes against a rigid wall. Because there is
friction between the package and the floor, the sliding of
the package across the floor increases their thermal energies.

System: The package—spring—floor—wall system in-
cludes all these forces and energy transfers in one isolated
system. Therefore, because the system is isolated, its total
energy cannot change. We can then apply the law of conser-
vation of energy in the form of Eq. 8-37 to the system:

Emec,Z = Emec.l - AEth° (8_42)
Calculations: In Eq. 8-42, let subscript 1 correspond to
the initial state of the sliding package and subscript 2 corre-
spond to the state in which the package is momentarily
stopped and the spring is compressed by distance d. For
both states the mechanical energy of the system is the sum

e A A S R

|«<— Friction —=}«———Frictionless ————]

Stop First touch

During the rubbing, kinetic energy
is transferred to potential energy
and thermal energy.

Fig. 8-17 A package slides across a frictionless floor with
velocity v, toward a spring of spring constant k. When the
package reaches the spring, a frictional force from the floor
acts on the package.

of the package’s kinetic energy (K = %mvz) and the spring’s
potential energy (U = %kxz). For state 1, U = 0 (because the
spring is not compressed), and the package’s speed is v;.
Thus, we have

Emec,l = Kl + U1 = %mv% + 0.

For state 2, K = 0 (because the package is stopped), and the
compression distance is d. Therefore, we have

Epecr = Ky + Uy = 0 + 3kd>
Finally, by Eq. 8-31, we can substitute f;d for the change

AEy, in the thermal energy of the package and the floor. We
can now rewrite Eq. 8-42 as

%kd2 = %mv% — fid.
Rearranging and substituting known data give us
5000d? + 15d — 16 = 0.
Solving this quadratic equation yields

d=0.055m=5.5cm. (Answer)




Dissipative and External Forces H”

Frictional forces reduce the total mechanical energy.
External forces can increase the mechanical energy.

WNC:AK—I—AU:Fd—Fde

Fd = AE,... + AE,. (8-32)

W =AE ..+ AE, (work done on system, friction involved).

(8-33)




Dissipative and External Forces —

Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass m = 14 kg) across a concrete floor with a constant
horizontal force F of magnitude 40 N. In a straight-line dis-
placement of magnitude d = 0.50 m, the speed of the crate
decreases from vy, = 0.60 m/stov = 0.20 m/s.

(a) How much work is done by force F,and on what system
does it do the work?

KEY IDEA

Because the applied force F is constant, we can calculate
the work it does by using Eq. 7-7 (W = Fd cos ¢).

Calculatlon Substituting glven data, including the fact that

force F and displacement d are in the same direction, we
find

W = Fdcos ¢ =
=201.

(40 N)(0.50 m) cos 0°
(Answer)

Reasoning: We can determine the system on which the
work is done to see which energies change. Because the
crate’s speed changes, there is certainly a change AK in
the crate’s kinetic energy. Is there friction between the floor
and the crate, and thus a change in thermal energy? Note
that F and the crate’s velocity have the same direction.

Thus, if there is no friction, then F should be accelerating
the crate to a greater speed. However, the crate is slowing, so
there must be friction and a change AE,; in thermal energy
of the crate and the floor. Therefore, the system on which
the work is done is the crate—floor system, because both en-
ergy changes occur in that system.

(b) What is the increase AEy, in the thermal energy of the
crate and floor?

KEY IDEA

We can relate AEy, to the work W done by F with the energy
statement of Eq. 8-33 for a system that involves friction:

W = AE,.. + AE,,

(8-34)

Calculations: We know the value of W from (a). The
change AE .. in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

AE,.. = AK = 1mv? — Imv}.
Substituting this into Eq. 8-34 and solving for AEy;,, we find
AE, = W — 3mv2 — 3mv}) = W — Im(v? — v})
=207 — 3(14 kg)[(0.20 m/s)> — (0.60 m/s)?]
=2221=22]. (Answer)




Force: negative of the slope of U H”

AU(x) = —W = —F(x) Ax.

AU = — f ") dx. | (8-6)

dU(x)

Fla) = - dx

(one-dimensional motion) (8-22)

Elastic potential energy and Hooke's law

U(x) = 1kx?  Flx) = —kx

Gravitational potential energy and gravitational force

Ux)=mgx F= —mg




Reading a Potential Curve H”

dU(x)
dx

(one-dimensional motion) (8'22)

F(x) = —

harmonic oscillator

Fv=0
—_—T

1 2
2k(—A)
| |
XxX=-A x=0

F=0 Vg

IR o T

F=0




Reading a Potential Curve H”

(one-dimensional motion)  (8-22)

F=0 Vg

I,




= —

harmonic oscillator
E(J)4

v=0F

. ‘ RN y A ' o K -
A Equilibrium +A  x(m) LSS Am] 52
Turning position Turning | |

point point Xx=0x=A

F=0

Turning point: place where K=0, U=E¢ch,
and the motion of the particle changes direction.




Reading a Potential Curve —

dU(x) (8-22)
dx

(one-dimensional motion)

F(x) = —

This is a plot of the potential Force is equal to the negative of
the slope of the U(x) plot.

U(x) energy U versus position x.
Strong force, +x direction

. /\

x| XQ\(S ‘4\/\3
Mild force, —x direction




Reading a Potential Curve

dU(x)
dx

(one-dimensional motion) (8_22)

F(x) = —

This is a plot of the potential Force is equal to the negative of
energy U versus position x. the slope of the U(x) plot.

Strong force, +x direction

/A
X3 *4\/3‘5

Mild force, —x direction

U (), B () The flat line shows a given value of U (), Epee (J) The difference between the total energy
the total mechanical energy E e and the potential energy is the

U(x) U(x) kinetic energy K.
—A o= 5. E,..=501]

7z

X

(d) X Xg X3 x5

Since K can never be negative (because v? is always positive), the particle can
never move to the left of x;, where E__. — U is negative. Instead, as the particle
moves toward x; from x,, K decreases (the particle slows) until K = 0 at x; (the
particle stops there).




Reading a Potential Curve

This is a plot of the potential Force is equal to the negative of
t(x) energy U versus position x. the slope of the U(x) plot.

Strong force, +x direction

Mild force, —x direction

U (J), Epee (1) The flat line shows a given value of U (J), Epee ) The difference between the total energy
the total mechanical energy Epgc. and the potential energy is the

U(x) U(x) kinetic energy K.
——4 Epec=501 Epee=5.0 1

— At this position, K is zero (a turning point).

The particle cannot go farther to the left.
U (), By () i For either of these three choices for Eqqc,
— At this position, K is greatest and the particle is trapped (cannot escape
the particle is moving the fastest. left or right).

/E,m.c=5.0 ]
/1\':5.0]31 Xy
K=1.0Jatx> x5




Uy, Egee (D

Equilibrium Points

For either of these three choices for Epgc,
the particle is trapped (cannot escape
left or nght).

Figure 8-9f shows three different values for E . superposed on the plot of the
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa-
tion. If £ .. = 4.0J (purple line), the turning point shifts from x; to a point
between x; and x,. Also, at any point to the right of xs, the system’s mechanical
energy is equal to its potential energy; thus, the particle has no kinetic energy and
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a
position is said to be in neutral equilibrium. (A marble placed on a horizontal
tabletop is in that state.)

If Eqec =3.0J (pink line), there are two turning points: One is between
x; and x,, and the other is between x4 and xs. In addition, x; is a point at which
K = 0. If the particle is located exactly there, the force on it is also zero, and the
particle remains stationary. However, if it is displaced even slightly in either
direction, a nonzero force pushes it farther in the same direction, and the particle
continues to move. A particle at such a position is said to be in unstable equilib-
rium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle’s behavior if E .. = 1.0 J (green line). If we place
it at x4, it is stuck there. It cannot move left or right on its own because to do so
would require a negative kinetic energy. If we push it slightly left or right,
a restoring force appears that moves it back to x,. A particle at such a position
is said to be in stable equilibrium. (A marble placed at the bottom of a
hemispherical bowl is an example.) If we place the particle in the cup-like poten-
tial well centered at x,, it is between two turning points. It can still move
somewhat, but only partway to x; or x;.




\.CH ECKPOINT 4

The figure gives the potential energy function U(x) for a system in which a particle is in
one-dimensional motion. (a) Rank regions AB, BC, and CD according to the magni-
tude of the force on the particle, greatest first. (b) What is the direction of the force
when the particle is in region AB?




A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between x = 0 and x = 7.00 m, it would have the
plotted value of U. At x = 6.5 m, the particle has velocity
vo = (—4.00 m/s)i.

(a) From Fig. 8-10a, determine the particle’s speed at
x; =45m.

(1) The particle’s kinetic energy is given by Eq. 7-1
(K = %mvz). (2) Because only a conservative force acts on
the particle, the mechanical energy E, ..(= K + U) is con-
served as the particle moves. (3) Therefore, on a plot of U(x)
such as Fig. 8-10a, the kinetic energy is equal to the differ-
ence between E,.. and U.

Calculations: Atx = 6.5 m,the particle has kinetic energy
K,y = 3mv} = 3(2.00 kg)(4.00 m/s)?
=16.01J.

Because the potential energy there is U = 0, the mechanical
energy is

Epee =Ko+ Uy=160J + 0= 16017.

This value for E,.. is plotted as a horizontal line in Fig.
8-10a. From that figure we see that at x = 4.5 m, the poten-
tial energy is U; = 7.0 J. The kinetic energy K, is the differ-
ence between E..and Uy:

Ki=FE,.—U; =160]J—-70J=9.01J.
Because K; = %mv%,we find
vy = 3.0 m/s. (Answer)

(b) Where is the particle’s turning point located?

KEY IDEA

The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has v = 0 and thus K = 0.

Calculations: Because K is the difference between
E . and U, we want the point in Fig. 8-10a where the plot of
U rises to meet the horizontal line of E ., as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-10b,
we can draw nested right triangles as shown and then write

Reading a potential energy graph

20
16

U(J)

Kinetic energy is the difference
between the total energy and
the potential energy.

UuJ)
20
Turning point

16 - . . .
The kinetic energy is zero
at the turning point (the
particle speed is zero).

7;— )

fe—d —

(%)

Fig. 8-10 (a) A plot of potential energy U versus position x. (b)
A section of the plot used to find where the particle turns around.

the proportionality of distances

1670  20—70
d C40-10"

which gives us d = 2.08 m. Thus, the turning point is at
x=40m—d=19m. (Answer)

(c) Evaluate the force acting on the particle when it is in the
region1.9m <x <4.0m.

KEY IDEA

The force is given by Eq. 8-22 (F(x) = —dU(x)/dx). The
equation states that the force is equal to the negative of the
slope on a graph of U(x).

Calculations: For the graph of Fig. 8-10b, we see that for
the range 1.0 m < x < 4.0 m the force is

20 —7.0]

F=—Tom—20m

=43N. (Answer)
Thus, the force has magnitude 4.3 N and is in the positive di-
rection of the x axis. This result is consistent with the fact
that the initially leftward-moving particle is stopped by the
force and then sent rightward.
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