Work and Energy —

We have studied motion in terms of force, now we consider
energy and momentum — CONSERVED quantities

This approach is helpful when dealing with many objects and considering
all forces involved become very difficult.

In this chapter we study WORK and ENERGY, both are SCALARS

There are different kinds of energy.

Kinetic energy and potential energy are examples of mechanical energy.
An object in motion has kinetic energy.

There are also thermal energy (heat), nuclear energy, etc.

The sum of all types of energy is CONSERVED.

Energy is not destroyed, only transformed.




To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement. The
force component perpendicular to the displacement does zero work.

W=Fd

—_ —>

W=F-d (work done by a constant force)

W = Fd cos ¢ (work done by a constant force)

The work done on an object by a force can be either positive
work or negative work, depending on the angle.

Units
1N.m=1J (joule)
1 dyne.cm =1 erg




Ex. 01 A person pulls a 50 kg crate 40m along a horizontal floor by a
constant force Fp=100N, which acts at a 37 degree angle. Ffr=50 N.
a) What is the work done by each force acting on the crate?

b) What is the net force done on the crate?

WG=0, WN =0, WP=3200J, Wifr=-2000J
Wnet=1200J

Ex. 02 Abox is dragged across a floor by a force as in the figure. If the angle
is increased from 0 to 90 degree, what happens to the work done to the box?
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Ex. 03 (a) Determine the work a hiker must do on a 15.0kg backpack to
Carry it up a hill of height h=10.0m with constant speed.
Determine also (b) the work done by gravity on the backpack,

(c ) the net work done on the backpack

WH=1470J WG=-1470J Wnhnet=0

Ex.04 Does Earth do work on the Moon?
NO, because the radial force is perpendicular to tangential motion of the Moon




Kinetic Energy —

7-3 Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

2 (kinetic energy). (7-1)

K = %mv

For example, a 3.0 kg duck flying past us at 2.0 m/s has a Kinetic energy of
6.0 kg - m?/s%; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and every other type of energy) is the joule (J),
named for James Prescott Joule, an English scientist of the 1800s. It is defined
directly from Eq. 7-1 in terms of the units for mass and velocity:

ljoule =1J = 1kg-m?s? (7-2)
Thus, the flying duck has a kinetic energy of 6.0 J.

Units
1N.m=1J (joule)
1 dyne.cm =1 erg




Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomo-
tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
Hundreds of people were hurt by flying debris; several were
killed. Assuming each locomotive weighed 1.2 X 10° N and
its acceleration was a constant 0.26 m/s2, what was the total
kinetic energy of the two locomotives just before th

collision? e

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:
v2 = v? + 2a(x — x,).
With v, = 0 and x — x; = 3.2 X 10° m (half the initial sepa-
ration), this yields
v2 =0 + 2(0.26 m/s%)(3.2 X 10° m),
or v =40.8 m/s

(about 150 km/h).

Fig. 7-1 The aftermath of an 1896 crash of two locomotives.
(Courtesy Library of Congress)

We can find the mass of each locomotive by dividing its
given weight by g:
1.2 X 10°N
9.8 m/s?
Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as
K = 2(3mv?) = (1.22 X 10° kg)(40.8 m/s)?
= 2.0 x 10%J. (Answer)
This collision was like an exploding bomb.

m = = 1.22 X 10° kg.




Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

Finding an Expression for Work

Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force F, directed at an angle ¢ to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

F.= ma,, (7-3)

- As the bead moves, the velocity changes
This component

does no work. V2 = V(2) + 2a.d.

Using F, in the equation above

. /- Wire 1 |
, PR T
Bead -/ / smv® —smvi = Fd.

This component
does work. The left side of the equation above tells us that

the kinetic energy has been changed by the force,
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smv: —smvy = Fd.

The left side of the equation above tells us that the kinetic energy has been
changed by the force. Therefore, the work W done on the bead by the force
(the energy transfer due to the force) is

W=Fd

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement. The
force component perpendicular to the displacement does zero work.

—_ —>

W=F-d (work done by a constant force)

W = Fd cos ¢ (work done by a constant force)

The work done on an object by a force can be either positive
work or negative work, depending on the angle.




Work-Kinetic Energy Principle —

Work - Kinetic Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial
K; = 3mv} to a later K, = 3mv?) to the work W (= F,d) done on the bead. For
such particle-like objects, we can generalize that equation. Let AK be the change
in the kinetic energy of the object, and let W be the net work done on it. Then

AK = K;— K; =W, (net work) | (7-10)

which says that

energy of a particle

(change in the kinetic) B (net work done on)

the particle

We can also write
K;=K;,+ W, (7-11)
which says that

( kinetic energy after )

kinetic energy the net
the net work is done '

before the net work work done

These statements are known traditionally as the work-Kkinetic energy theorem

Work-kinetic energy principle:
The net work done on an object is equal to the change in the

obiect’s kinetic enero




Ex. 05 A 145-g baseball is thrown so that it acquires a speed of 25m/s

(@) What is its kinetic energy?
(b) What was the net work done on the ball to make it reach this speed, if it

started from rest?

K=45J and Wnet=45J

Ex. 06 How much work is required to accelerate a 1000-kg car from
20m/s to 30m/s

W =25x10"J

net




Exercise

Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d of magnitude
8.50 m, straight toward their truck. The push F, 1 of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull 1_7; of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces I?I and
F, during the displacement d?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W = Fd cos ¢) or Eq. 7-8 (W = F-d) to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by F; is

W, = Fid cos ¢; = (12.0 N)(8.50 m)(cos 30.0°)
= 88337,

and the work done by F, 2 is
W, = Fdcos ¢, =
=65.111.
Thus, the net work Wis

W=W,+W,=8833J +65.11]
= 15347 ~ 153 1.

(10.0 N)(8.50 m)(cos 40.0°)

(Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

Fig. 7-4 (a) Two spies move a floor safe through a
displacement d. (b) A free-body diagram for the safe.

(b) During the displacement, what is the work W, done on
the safe by the gravitational force F and what is the work
Wy done on the safe by the normal force FN from the
floor?

KEY IDEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgd cos 90° = mgd(0) =0  (Answer)
and Wy = Fyd cos 90° = Fd(0) = 0 (Answer)
We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed v, at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by Fl and F7

Calculations: We relate the speed to the work done by
combining Eqgs. 7-10 and 7-1:

W = K;— K, = 3mv} — smv2.

The initial speed v; is zero, and we now know that the work
done is 153.4 J. Solving for vy and then substituting known
data, we find that

L [2W _ [2(5347)
4 m \ 225kg

= 1.17 m/s. (Answer)

Only force components
parallel to the displacement
do work.
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&
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Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (— 30m)1
whlle a steady wind pushes against the crate with a force

= 20N)i + (- 6ON)] The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-

tion during the displacement, we can use either Eq. 7-7 (W =
Fd cos ¢) or Eq.7-8 (W = F- d) to calculate the work. Since
we know F and d in unit-vector notation, we choose Eq. 7-8.

Calculations: We write
W=F-d = [(20N)i + (—6.0 N)j]-[(—3.0 m)i].

Of the possible unit-vector dot products, only i-1i, j-j, and
k -k are nonzero (see Appendix E). Here we obtain
W = (2.0N)(=3.0m)i-i + (—6.0 N)(—3.0m)j-i
=(—-6.01)(1)+0=-6.01J.

(Answer)

The parallel force component does
negative work, slowing the crate.

Fig. 7-5 Force F E
slows a crate during
displacement d.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement d what is its kinetic energy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem in
the form of Eq. 7-11, we have
K=K, +W=10J + (—6.0J)

Less kinetic energy means that the crate has been slowed.

=4.01. (Answer)




Work by Gravitational Force

4l ¢

The force does negative
work, decreasing speed
and kinetic energy.

Vo

Fig. 7-6 Because the gravitational force
1?; acts on it, a particle-like tomato of mass
m thrown upward slows from velocity v, to
velocity ¥ during displacement d. A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

K; (= 3 mvj) to K; (= 3mv?).

7-6 Work Done by the Gravitational Force

We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed vy and thus with initial kinetic energy K; = 2mv(, As the tomato
rises, it is slowed by a gravitational force F that is, the tomato’s kinetic energy
decreases because F does work on the tomato as it rises. Because we can treat
the tomato as a paltlcle we can use Eq. 7-7 (W = Fd cos ¢) to express the work
done during a displacement d. For the force magnitude F, we use mg as the mag-
nitude of F‘g.Thus, the work W, done by the gravitational force f_T; is

W, = mgd cos ¢ (work done by gravitational force). (7-12)

For a rising object, force f_‘; is directed opposite the displacement d. as indi-
cated in Fig. 7-6. Thus, ¢ = 1807 and W, = - mg(y-y)

W, = mgd cos 180° = mgd(—1) = —mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object. This is consistent with the slowing of the object as it rises.

After the object has 1eached its maximum helght and is falling back down,
the angle ¢ between force F and displacement d is zero. Thus,

W, = mgd cos 0° = mgd(+1) = +mgd. (7-14)




Lifting an Object
g J —

Work Done in Lifting and Lowering an Object

Now suppose we lift a particle-like object by applying a vertical force F to it.
During the upward displacement, our applied force does positive work W, on the
object while the gravitational force does negative work W, on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change AK in the kinetic energy of the
object due to these two energy transfers is

AK =K;— K;= W, + W, (7-15)

in which K¢ is the kinetic energy at the end of the displacement and K is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy to the object while our
force tends to transfer energy from it.

In one common situation, the object is stationary before and after the lift—
for example, when you lift a book from the floor to a shelf. Then K; and K; are
both zero,and Eq. 7-15 reduces to

or

Note that we get the same result if K; and K; are not zero but arejstill equal




Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig.7-8a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F_;?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12
(W, = mgd cos @) to find the work W,.

Calculation: From Fig. 7-8b, we see that the angle between
the directions of I?g and the cab’s displacement d is 0°.
Then, from Eq. 7-12, we find

W, = mgd cos 0° = (500 kg)(9.8 m/s2)(12 m)(1)
=5.88 X 10*J =~ 59 kJ. (Answer)

(b) During the 12 m fall, what is the work W; done on the
cab by the upward pull 7 of the elevator cable?

KEY IDEAS

(1) We can calculate work W, with Eq.7-7 (W = Fd cos ¢) if
we first find an expression for the magnitude 7 of the cable’s
pull. (2) We can find that expression by writing Newton’s
second law for components along the y axis in Fig. 7-8b
(Frety = may).

Calculations: We get

T - F,=ma. (7-18)

Solving for T, substituting mg for F,, and then substituting
the result in Eq. 7-7, we obtain

Wy = Tdcos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration a
and then 180° for the angle ¢ between the directions of
forces T and mg, we find

W = m(—% +g)dcos¢ = %mga’cosd)

= % (500 kg)(9.8 m/s?)(12 m) cos 180°

= —4.70 X 10*J ~ —47kJ. (Answer)

Caution: Note that W7 is not simply the negative of W,.
The reason is that, because the cab accelerates during the

fall, its speed changes during the fall, and thus its kinetic
energy also changes. Therefore, Eq. 7-16 (which assumes
that the initial and final kinetic energies are equal) does
not apply here.

(c) What is the net work W done on the cab during the fall?
Calculation: The net work is the sum of the works done by
the forces acting on the cab:
W=W,+ W;=588x10*J — 470 X 10*J
=118 X 10*J =~ 12 kJ.

(d) What is the cab’s kinetic energy at the end of the 12 m
fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq.7-11 (K; = K; + W).

(Answer)

Calculation: From Eq. 7-1, we can write the kinetic energy

at the start of the fall as K; = %mv,—z. We can then write Eq.
7-11 as

K, =K, + W=%mv,2+ w
= %(500 kg)(4.0 m/s)2 + 1.18 X 10*J

=1.58 X 10*J ~ 16 kJ. (Answer)

Elevator
cable

Does
negative
work

Does
positive
work

2 [

(a) ()

Fig. 7-8 An elevator cab, descending with speed v;, suddenly
begins to accelerate downward. (a) It moves through a displacement
d with constant acceleration @ = g/5. (b) A free-body diagram for
the cab, displacement included.




To a good approximation for many springs, the force F,froma spring is pro-
portional to the displacement d of the free end from its position when the spring
is in the relaxed state. The spring force is given by

F; = —kd (Hooke’s law),

(7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement. The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x = 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq. 7-20 as

F.= —kx (Hooke’s law), (7-21)
where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then F, is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then F, is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end. Thus F, can be symbolized as F(x). Also
note that Hooke’s law is a linear relationship between F, and x.

Hooke’s law

il

x=0 Block
E=0 attached
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Work BY Elastic/Spring Force —

W, = f'f—dex.

From Eq.7-21, the force magnitude F, is kx. Thus, substitution leads to

xf xf
W{=f —kxdx=—kf x dx

= (=3[ = (—3Kk)(xF — xD). (7-24)
Multiplied out, this yields

W, = %kx;?' — %kszc (work by a spring force). (7-25)

Work W_is positive if the block ends up closer to the relaxed position (x = 0) than
it was initially. It 1s negative if the block ends up farther away from x = 0. It is zero if
the block ends up at the same distance from x = 0.

If x; = 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force).




Work ON the spring H”

Now suppose that we displace the block along the x axis while continuing to apply a
force F, to it. During the displacement, our applied force does work W, on the block
while the spring force does work W,. By Eq. 7-10, the change AK in the kinetic en-
ergy of the block due to these two energy transfers is

AK =K;— K;= W, + W, (7-27)

in which K;is the kinetic energy at the end of the displacement and K is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then K,and K; are both zero and Eq. 7-27 reduces to

W, =W, (7-28)

a

S If the kinetic energy CHANGES,
we need to consider BOTH works.
They are NOT equal.




Force and Work ON the spring —

If the kinetic energy does NOT change, the applied force is EQUAL to the
force by the spring, as in a stationary case.

Force by the hand on the spring F = Jx
(k — spring stiffness constant)

-, Work done BY the hand to compress or stretch the spring.
£ This force is NOT constant!




Work done by spring to change kinetic energy

In Fig. 7-10, a cumin canister of mass m = 0.40 kg slides
across a horizontal frictionless counter with speed v = 0.50
m/s. It then runs into and compresses a spring of spring con-
stant k = 750 N/m. When the canister is momentarily
stopped by the spring, by what distance d is the spring
compressed?

KEY IDEAS

1. The work W, done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (W, =
—2kx?), with d replacing x.

. The work W; is also related to the kinetic energy of the
canister by Eq.7-10 (K; — K; = W).

. The canister’s kinetic energy has an initial value of K =
1mv? and a value of zero when the canister is momentar-

ily at rest.

Calculations: Putting the first two of these ideas together,
we write the work—kinetic energy theorem for the canister
as

The spring force does
negative work, decreasing

—_—

speed and kinetic energy. | —

k
-"‘-(‘«FFFK"-'K“’({"’I“’/"’

il i ””““ I m Frictionless
LELEEEERR LAY /

—d —

Stop First touch

Fig. 7-10 A canister of mass m moves at velocity Vv toward a
spring that has spring constant k.

Substituting according to the third key idea gives us this
expression

0-— %mv2 = —%kdz.

Simplifying, solving for d, and substituting known data then

give us
m 0.40 kg
V.| i (0.50 m/s)., | 750 Nim

12X102m=12cm. (Answer)




Work done by a general variable force

We can approximate In one dlmenS|On

Work is equal to the that area with the area
area under the curve. of these strips.

F(x) F(x)

f
W = f F(x) dx (work: variable force).
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Work-Kinetic Energy Theorem —

W = J"IF(x) dx = ffma dx,

dv
ma dx = m — dx.

dt

From the chain rule of calculus, we have
dv  dv dx
dt — dx dt
dv

madx = m d_ vdx = mvdv.
ix

v v
W = mvdv = m vdy
Vi Vi

_1 2 1 2
= ;mvs > mv;.

W:Kf_Kl:AK..

which is the work —kinetic energy theorem.




Work calculated by graphical integration

In an epidural procedure, as used in childbirth, a surgeon or
an anesthetist must run a needle through the skin on the pa-
tient’s back, through various tissue layers and into a narrow
region called the epidural space that lies within the spinal
canal surrounding the spinal cord. The needle is intended to
deliver an anesthetic fluid. This tricky procedure requires
much practice so that the doctor knows when the needle has
reached the epidural space and not overshot it, a mistake
that could result in serious complications.

The feel a doctor has for the needle’s penetration is the
variable force that must be applied to advance the needle
through the tissues. Figure 7-12a is a graph of the force mag-
nitude F versus displacement x of the needle tip in a typical
epidural procedure. (The line segments have been straight-
ened somewhat from the original data.) As x increases from
0, the skin resists the needle, but at x = 8.0 mm the force is
finally great enough to pierce the skin, and then the re-
quired force decreases. Similarly, the needle finally pierces
the interspinous ligament at x = 18 mm and the relatively
tough ligamentum flavum at x = 30 mm. The needle then
enters the epidural space (where it is to deliver the anes-
thetic fluid), and the force drops sharply. A new doctor must
learn this pattern of force versus displacement to recognize
when to stop pushing on the needle. (This is the pattern
to be programmed into a virtual-reality simulation of an
epidural procedure.) How much work W is done by the
force exerted on the needle to get the needle to the epidural
space at x = 30 mm?

KEY IDEAS

(1) We can calculate the work W done by a variable force
F(x) by integrating the force versus position x. Equation
7-32 tells us that

W=f’F(x)dx.

We want the work done by the force during the displace-
ment from x; = 0 to x; = 0.030 m. (2) We can evaluate the
integral by finding the area under the curve on the graph of
Fig.7-12a.

W— area between force curve
and x axis, from x; to xp )

Calculations: Because our graph consists of straight-line
segments, we can find the area by splitting the region below
the curve into rectangular and triangular regions, as shown
in Fig. 7-12b. For example, the area in triangular region A is

area 4 = 3(0.0080 m)(12 N) = 0.048 N-m = 0.048J.
Once we’ve calculated the areas for all the labeled regions
in Fig. 7-12b, we find that the total work is
W = (sum of the areas of regions A through K)
=0.048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001
+ 0.016 + 0.048 + 0.016 + 0.004 + 0.024

=0.2381. (Answer)




Work, two-dimensional integration

Force F = (3x? N)i + (4 N)j. with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

3 0
W = f 3x dx+j 4dv=3J' x2dx+4f dy
3 2 3

3+ 4yl = [3° — 2%] + 4[0 — 3]

(Answer)

= 7.0J.

The positive result means that energy is transferred to the
particle by force F . Thus, the kinetic energy of the particle
increases and, because K = %mvz. its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.




Power is the rate at which work is done

The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time Az, the average
power due to the force during that time interval is

%4
[Frms = A (average power). (7-42)

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

AW
Cdt

P

(instantaneous power). (7-43)

Suppose we know the work W(7) done by a force as a function of time. Then to
get the instantaneous power P at, say, time ¢ = 3.0 s during the work, we would
first take the time derivative of W(¢) and then evaluate the result forr = 3.0 s.




Power is the rate at which work is done

_ work  energy transformed
P = average power = =

time time

In the S| system, the units of power are watts:
I1W=11J/s

The difference between walking and running up these
stairs is power — the change in gravitational potential

%" energy is the same.

& ™% Ex. 6-14 Compare the power of a 60-kg person to climb
LE% 45min2.0sandin4.0s
-\ % B W _mgy  in4.0s: power=660W
Ty in 2.0s: power=1320W
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Power is the rate at which work is done

_ work  energy transformed
P = average power = =

time time

In the Sl system, the units of power are watts:

1W=11J/s

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour. Thus,

1 kilowatt-hour = 1 kW -h = (10° W)(3600 s)
=3.60 X 10°J = 3.60 M. (7-46)




. —

Power is also needed for acceleration and for moving against the force of gravity.

The average power can be written in terms of the force and the average velocity:

— W Fd _
P=—=—=Fv
‘ ‘ Fy .
Ex. 6-15 Calculate the power required mg sin 10
for a 1400-kg car to climb a10 degree - | p

hill at a steady 22m/s. Assume the
retarding force on the car FR=700N.

F =700N +mgsinl0°
P=Fv=680x10*W




Instantaneous Power H

dW F cos ¢ dx dx
odr dt _Fcosd)(dr)’

P = Fv cos ¢.

P

P=F-v

(instantaneous power).

Power, force, and velocity

Figure 7-14 shows constant forces F; and F, acting on a box
as the box slides rightward across a frictionless floor. Force F,
is horizontal, with magnitude 2.0 N; force F, is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force F,,
at angle ¢, = 180° to velocity ¥, we have

P, = Fyv cos ¢, = (2.0 N)(3.0 m/s) cos 180°
= —6.0 W.

This negative result tells us that force F,is transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F,,at angle ¢, = 60° to velocity v, we have
P, = Fv cos ¢, = (4.0 N)(3.0 m/s) cos 60°
= 6.0 W.

(Answer)

(Answer)

Negative power. Positive power.
(This force is - (This force is

removing energy.) fe supplying energy.)
71\ —

Fig. 7-14 Two forces F, yand E act on a box that slides rightward
across a frictionless floor. The velocity of the boxis V.

—
Frictionless F
P M

This positive result tells us that force F, is transferring en-
ergy to the box at the rate of 6.0 J/s.
The net power is the sum of the individual powers:

P =P + P,

=—60W+60W=0, (Answer)
which tells us that the net rate of transfer of energy to
or from the box is zero. Thus, the kinetic energy (K = ;mv?)
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces F, and F, nor the
velocity Vv changing, we see from Eq. 7-48 that P, and P, are
constant and thussois P_,.




