Circular Motion
]

We need a net force to change the velocity
its magnitude or its direction

Uniform Circular Motion:

motion in a circle of constant radius at constant speed

direction is continuously changing

Instantaneous velocity is always tangent to circle.
B

Attention!!! The material covered here is in Sec.4.7 and in Ch.6 of your book.




Centripetal Acceleration —

Acceleration points towards the center
centripetal or radial

: /Similar triangles
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Even though the magnitude of the velocity may not change, the
direction changes, so there is an acceleration.




Centripetal Acceleration |

() (9

The scalar components of v are shown in Fig. 4-17b. With them, we can write
the velocity v as

V =vd + v,j = (—vsin )i + (v cos 0)]. (4-36)

Now, using the right triangle in Fig. 4-17a, we can replace sin 6 with y,/r and

cos @ with xp/r to write
— vy, A VX ~
v = (— - )1 + (—p)]. (4-37)
r r

To find the acceleration @ of particle p, we must take the time derivative of this
equation. Noting that speed v and radius r do not change with time, we obtain

v ) dy, \. @
— dv 2(_1_ ('vp)i-i-(‘—(\p)j. (4-38)

dt r dt r dt




Centripetal Acceleration Il

() (9

Now note that the rate dy,/dt at which y, changes is equal to the velocity
component v,. Similarly, dx,/dt = v,, and, again from Fig. 4-17b, we see that v, =
—vsin fand v, = v cos 6. Making these substitutions in Eq. 4-38, we find

p2

)2 ~
q= (—— cos O)i % (— " sin 0>j. (4-39)
!

. :
This vector and its components are shown in Fig. 4-17¢. Following Eq. 3-6, we find
2

)2 2
a=Va+a= k \/(C059)2+(sin0)2=—v \/T=—v
. r r

" s

as we wanted to prove. To orient @, we find the angle ¢ shown in Fig. 4-17¢:

a, —(v?/r) sin 0
te — — = = (¢ A
2L a, —(v?r)cos 6 al

Thus, ¢ = #, which means that @ is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.




Period and Frequency —
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Ex. 01 Aball at the end of a string is revolving uniformly in a horizontal
circle of radius 0.600 m. The ball makes 2 revolutions per second. What is

its centripetal acceleration?

Ex.02 The Moon’s circular orbit about the Earth has a radius of 384000km and
a period T of 27.3 days. What is the acceleration of the Moon toward the Earth




Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of ¥, = (400i + 500j) m/s and 24.0 s later leaves the
turn with a velocity of Tff = (—400i — 500j) m/s? -

KEY IDEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq.4-34 (a = v¥/R), where R is the cir-

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq.4-35 (T = 2@ R/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34. We find

27V

i

Speed v here is the (constant) magnitude of the velocity
during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

v = V(400 m/s)> + (500 m/s)> = 640.31 m/s.

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken 7 = 48.0 s.
Substituting these values into our equation for a, we find

_ 2m(640.31 m/s)
48.0s

= 83.81 m/s? ~ 8.6g.

a (Answer)




Dynamics of Uniform Circular Motion —

For an object to be in uniform circular motion, there must be a net force
acting on it.

HORIZONTAL motion

We already know the acceleration, so we
can immediately write the force:

2

\\\\\\ 2y = mag = m%
\

Ex.-03 What is the force a person has
to exert in Ex.5-1 if m=150g7?

What happens if the ball is released?
7 It flies off tangentially

———
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Example (Vertical Circle) H

A 0.150-kg ball on the end of a 1.10 m-long cord is
swung in a VERTICAL circle.

(a) Determine the minimum speed the ball must
have at the top to keep the circular motion.

(b) Calculate the tension in the cord at the bottom
assuming the ball is moving at twice the speed

of part (a)

(@ Vg = /3T

Ex05. (Ferris wheel)

Normal force at the top is .

less, more, or equal to oo s o s i
the normal force at the

bottom?




Example (Vertical Circular Loop)

Vertical circular loop, Diavolo

In a 1901 circus performance, Allo “Dare Devil” Diavolo
introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R = 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-
tact with it there? =

ENORMOUS
S SHOWS UNITED

Diavolo
and bicycle

The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)

KEY IDEA

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration @ of this particle
must have the magnitude a = v*/R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force i; is downward along a y axis;so is
the normal force Fy, on the particle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s

second law for y components (F,,, = ma,) gives us

—Fy— Fy;=m(—a)

v2
and —Fy —mg = m(——).

= (6-19)

If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that Fy = 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for Fy in Eq. 6-19, solving for v,
and then substituting known values give us

v =VgR = V(9.8 m/s?)(2.7 m)

= 5.1 m/s. (Answer)
Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.
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It is the FRICTION force that allows a
car to round a curve.
It points toward the center of the curve.

If the tires roll without sliding, the bottom of the
tire is at rest against the road
Static friction force

(b) If the static friction is not enough to keep
Copyright © 2005 Pearson Prentice Hall, Inc. the circular motion. the car slides.

The friction force becomes kinetic

Ex. 06 A 1000-kg car rounds a curve on a flat road of radius 50 m at a
speed of 14 m/s. Will the car follow the curve or skid? Assume:

(a) Pavement is dry, coefficient of static friction = 0.60

(b) Pavement is wet, coefficient of static friction = 0.25




Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing. This downward push is called negative lift. Can
a race car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass
m = 600 kg as it travels on a flat track in a circular arc of
radius R = 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift F; down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.) -

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift F; acting downward on the car?

center

The toward-the-
center force is (a)
the frictional force.

Negative Lift |

Car in flat circular turn

Friction: toward the

Track-level view ()
of the forces

Fig. 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force f, provides the necessary centripetal force along a radial axis r. (b) A free-body diagram (not
to scale) for the car, in the vertical plane containing r.

KEY IDEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force f, (Fig.6-10a).

4. Because the car is on the verge of sliding, the magnitude
f; 1s equal to the maximum value f; .« = u.Fn, where Fy
is the magnitude of the normal force ﬁN acting on the
car from the track.

Radial calculations: The frictional force ?S is shown in the
free-body diagram of Fig. 6-10b. It is in the negative direc-

A Normal force:
Fy  helps support car

/‘ Car
—— 1
Gravitational force:

;; pulls car downward
3

v
Negative lift: presses
car downward




Negative Lift Il

tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v*/R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (F,., = ma,) as

—fs = (6-20)

Substituting f; ma.x = usFy for f; leads us to

2

By =m ("7 ) (6-21)

Vertical calculations: Next, let’s consider the vertical
forces on the car. The normal force F, v 1s directed up, in the
positive direction of the y axis in Fig. 6-10b. The gravita-
tional force F; = mg and the negative lift F, are directed
down. The acceleration of the car along the y axis is zero.
Thus we can write Newton’s second law for components
along the y axis (F,, = ma,) as

et,y
FN_mg_FL=O,

or Fy=mg+ F,. (6-22)

Combining results: Now we can combine our results along
the two axes by substituting Eq. 6-22 for Fy in Eq. 6-21. Doing
so and then solving for F; lead to

oE
F1,=m( _3)

usR
B (28.6 m/s)?
 G0X) ( (0.75)(100 m)
— 663.7 N ~ 660 N.

—98 m/sz)

(Answer)

(b) The magnitude F; of the negative lift on a car depends
on the square of the car’s speed v?, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

KEY IDEA

F, is proportional to v

Calculations: Thus we can write a ratio of the negative lift

F; oo at v = 90 m/s to our result for the negative lift F; atv =
28.6 m/s as
FL_QO _ (90 m/s)2

F,  (28.6m/s)?

Substituting our known negative lift of F; = 663.7 N and
solving for F; o, give us

F} g9 = 6572 N = 6600 N. (Answer)
Upside-down racing: The gravitational force is, of course,
the force to beat if there is a chance of racing upside down:

F, = mg = (600 kg)(9.8 m/s?)
= 5880 N.

With the car upside down, the negative lift is an upward
force of 6600 N, which exceeds the downward 5880 N. Thus,
the car could run on a long ceiling provided that it moves at
about 90 m/s (= 324 km/h = 201 mi/h). However, moving
that fast while right side up on a horizontal track is danger-
ous enough, so you are not likely to see upside-down racing
except in the movies.




Banked Curves
]

The banking of curves reduce the chance of skidding

For a given angle, there is one speed for which no
friction is required to keep the circular motion

2
V

Fysm@=m—
r
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Ex. 07 For a car traveling at speed v around a curve of radius r, determine a
formula for the angle at which a road should be banked so that no friction is
required




NONuniform Circular Motion —

The speed of a object moving in a circle changes if the force on it has a
tangential component




Centrifugation
= —

Force exerted
by liquid

Copyright © 2005 Pearson Prentice Hall, Inc.

A centrifuge works by spinning very fast.
This means there must be a very large
centripetal force.

The resistance of the fluid does not equal
the centripetal force and the particles
eventually reach the bottom of the tube.




-

Gravitation is covered by your book in Chapter 13. We discuss here what is
contained in Ch13.1-Ch.13.2 and a little bit, in a simplified language, what is
In Ch.13.6-Ch.13.7.




Newton’s Law of Universal Gravitation —

What exerts the force of gravity? Every object on Earth feels it and it always
points towards the center of the Earth.

Newton’s concluded that it must be the Earth
that exerts the gravitational force.

(legend: falling apple)

He further realized that this force must be
what keeps the Moon in its orbit.

This forces decreases with the square of the

distance from the Earth’s center.
(Ex.5.2: a~g/3600)

Action and reaction — the force is proportional
to both masses.

He further concluded that this force should
et also keep the planets in their orbits —
o e therefore it should be a force between all

objects!

Newton proposed a law of universal gravitation




Law of Universal Gravitation —

Every particle in the universe attracts every other particle with a force that
is proportional to the product of their masses and inversely proportional to
the square of the distance between them. This force acts along the line
joining the two particles.

Example: B

Moon (, F s
/Gravitational j._'-:: e :.-'j:f_ﬁ: e
force exerted on r

Moon by Earth

Bl / Gravitational force
‘ exerted on Earth

by the Moon
Copyright © 2005 Pearson Prentice Hall, Inc

G = 6.67 X 107" N-m*/kg’

Ex. A 50-kg person and a 75-kg person are sitting on a bench. Estimate
the magnitude of the gravitational force each exerts on the other (r~0.5m).

F~10°N




Cavendish Experiment ”
- ~

The magnitude of the
gravitational constant G

can be measured in the laboratory.

Light ‘%
Source

(narrow beam)
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Gravity near the Earth’s surface —

Now we can relate the gravitational constant to the local acceleration of gravity.
We know that, on the surface of the Earth:

mg =G

Solving for g gives:

g

Now, knowing g and the radius of the Earth, the mass of the Earth can be

Sl or2  (9.80m/s%)(6.38 x 10°m)’ y
Mg = - = ——— pp—T 5 = 2.98 X 107"kg
G 6.67 X 107" N-m~/kg”

Ex. Estimate the value of g on the top of the Mt. Everest (8850 m above
Sea level), given that the radius of Earth is 6380 km.

r=6380 km + 8.9 km = 6.389x10° m 9=9.77m/s?

The value of g varies locally on the Earth’s surface — this is used by
geophysicists to study the structure of the Earth’s crust and in mineral

and oil exploration.




Difference in acceleration at head and feet

(a) An astronaut whose height 4 is 1.70 m floats “feet down”
in an orbiting space shuttle at distance r = 6.77 X 10° m away
from the center of Earth. What is the difference between the
gravitational acceleration at her feet and at her head?

KEY IDEAS

We can approximate Earth as a uniform sphere of mass M.
Then, from Eq. 13-11, the gravitational acceleration at any dis-
tance r from the center of Earth is

GMg

ag=—17 -
We might simply apply this equation twice, first with r =
6.77 X 10°m for the location of the feet and then with
r=677%10°m + 1.70m for the location of the head.
However, a calculator may give us the same value for a, twice,
and thus a difference of zero, because 4 is so much smaller
than r. Here’s a more promising approach: Because we have
a differential change dr in r between the astronaut’s feet and
head, we should differentiate Eq. 13-15 with respect to r.

(13-15)

Calculations: The differentiation gives us

GM,

da, = 2 r3E dr, (13-16)

g

where da, is the differential change in the gravitational
acceleration due to the differential change dr in r. For the
astronaut, dr = h and r = 6.77 X 10° m. Substituting data

into Eq. 13-16, we find

_ _, (667 X 10" m¥kg-s)(5.98 X 10%kg)
s (6.77 X 10°m)?

da

(1.70 m)

—4.37 X 10°¢ m/s?, (Answer)

where the M value is taken from Appendix C. This result
means that the gravitational acceleration of the astronaut’s
feet toward Earth is slightly greater than the gravitational
acceleration of her head toward Earth. This difference in
acceleration (often called a fidal effect) tends to stretch her
body, but the difference is so small that she would never even
sense the stretching, much less suffer pain from it.

(b) If the astronaut is now “feet down” at the same or-
bital radius r = 6.77 X 10° m about a black hole of mass
M;, = 1.99 X 10*! kg (10 times our Sun’s mass), what is the
difference between the gravitational acceleration at her
feet and at her head? The black hole has a mathematical
surface (event horizon) of radius R, =2.95 X 10* m.
Nothing, not even light, can escape from that surface or
anywhere inside it. Note that the astronaut is well outside
the surface (at r = 229R)).

Calculations: We again have a differential change dr in r
between the astronaut’s feet and head, so we can again use
Eq. 13-16. However, now we substitute M;, = 1.99 X 10°! kg
for M. We find

SRS o (6.67 X 107! m¥kg-s?)(1.99 X 10> kg)
% (6.77 X 106m)?

= —14.5 m/s%.

(1.70 m)

(Answer)

This means that the gravitational acceleration of the astro-
naut’s feet toward the black hole is noticeably larger than
that of her head. The resulting tendency to stretch her body
would be bearable but quite painful. If she drifted closer
to the black hole, the stretching tendency would increase
drastically.




Satellites are routinely put into orbit around the Earth. The tangential speed
must be high enough so that the satellite does not return to Earth, but not so

high that it escapes Earth’s gravity altogether.

27,000 km/h 30,000 km/h Satellite in orbit:
circular elliptical

G msatmE

2
r

Ex. 5-14 A geosynchronous satellite always
stays above the same point on the Earth. It
is used for TV, radio, weather forecasting,etc.
Determine (a) the height above Earth;

Copyright © 2005 Pearson Prentice Hall, Inc (b) SUCh Sate”Ite,S Speed
1=24h=86400s

r=42300km  a) Above Earth:42300-6380~36000km b) v=3070m/s




“Weightlessnhess”
= —

\ —
: pme

(b) Cl:% g (up) (c) a= g (down)
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If a is + (elevator going up) the APPARENT weight is larger than mg

If a is — (elevator going down) the APPARENT weight is less than mg

If the elevator is in free fall, a=-g and the scale reads zero
APPARENT WEIGHTLESSNESS: with respect to the elevator, things
do not fall to the floor




”
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Planet

(i) The orbit of each planet is an ellipse, with the

Sun at one focus.
E;/ Sun

1
The Sleepwalkers — by Arthur Koestler \S\

(i) An imaginary line drawn from each planet to the S.... c..ccpocue o que
areas in equal times.
ZF = ma

2 3
i m U GmMs v (2m)
5 o R T

Ex. Mars’ period is 687 days=1.88 years, Earth’s period is 1 year,
and the distance of Earth from the Sun is 1.50x10%11 m. How far is Mars from

the Sun? Mvs=1.92rgg

Ex. Determine the mass of the Sun.




Kepler and Newton’s laws —

Kepler’s laws can be derived from Newton’s laws. Irregularities in planetary
motion led to the discovery of Neptune, and irregularities in stellar motion have
led to the discovery of many planets outside our Solar System.

& .
& Jupiter

(a) . e ' O

M

47 Planet

Ursae @

Majoris

Upsilon
(c) Andromedae
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Types of Forces in Nature H

Modern physics now recognizes four fundamental forces:
1. Gravity

Electromagnetism

2
3. Weak nuclear force (responsible for some types of radioactive decay)
4

Strong nuclear force (binds protons and neutrons together in the nucleus)




