General Physics -- PHY1051

1. What is **science**?

Latin: *scientia*=knowledge i) science vs. art

- ii) natural vs. social sciences
- iii) fundamental/pure vs. applied

2. What is a scientific method?

i) investigation/observation

- ii) formulation and testing of hypotheses
- iii) experiment/reproduction

3. What is a theory?

(common language vs. science)

- i) mathematical or logical explanation
- ii) can be tested
- iii) make predictions

Theories can be improved and replaced

Physics

What is physics? Study of matter, energy, and the interaction between them

Classical physics and Modern physics up to the XIX XX and XXI

Classical mechanics, Electromagnetism, Thermodynamics, Statistical Mechanics,

Relativity, Quantum Mechanics

What is the relation between physics and other fields?

Contributions to physics Physiologist Luigi Galvani (book - page 4) Botanist Robert Brown (http://en.wikipedia.org/wiki/Brownian_motion) from physics MRI

radiation therapy

Physics is...

Scanned at the American Institute of Physics

Bohr and Einstein in Paul Ehrenfest's home, Brussels, 1930

Measurements - important part of physics

 have uncertainty associated (accuracy/limitations of instruments)

Estimated uncertainty 5.2 ± 0.1 cm

Percent uncertainty

$$\frac{0.1}{5.2} \approx 0.02 = 2\%$$

Diamond $8.17 \pm 0.05 \text{ g}$ How do we compute the percent uncertainty? If we weigh it and get 8.09 g, could it be the same diamond? a) 0.05/8.17 and NO (b) 0.05/8.17 and YES c) 8.17/0.05 and YES d) 8.17/0.5 and NO

Significant Figures

Significant figures - number of reliably known digits in a number

23.21 cm – four 23.210 cm - five

0.062 cm - two

80 km - one or two (80. km) 80.0 km - three

Do not keep more digits than justified

Area of rectangle: 11.3 cm by 6.8 cm

11.3x6.8=76.84, but 11.2x6.7=75.04 and 11.4x6.9=78.66

therefore the area is 77cm^2

General rule for the number of significant digits of a result:

Multiplication and division: as many digits as the number with the least number of significant figures Addition and subtraction: result no more accurate than the least accurate number used

2355.242 + 23.57 = 2378.81

Scientific notation - write numbers in powers of ten

 $2321 = 2.321 \times 10^3$; $0.0062 = 6.2 \times 10^{-3}$

Depending on the accuracy

 3.69×10^{4} $36900 \begin{cases} 3.69 \times 10^{4} \\ 3.690 \times 10^{4} \\ 3.6900 \times 10^{4} \end{cases}$

Measurement is made relative to a standard/unit

The International System of Units (SI system)

Quantity	Unit name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	А
Temperature	kelvin	K
Amount of substance	mole	mol

TABLE 1–1 Some Typical Lengths or Distances (order of magnitud

Length (or Distance)	Meters (approximate)
Neutron or proton (radius)	$10^{-15} m$
Atom	10^{-10} m
Virus [see Fig. 1–8a]	10^{-7} m
Sheet of paper (thickness)	10^{-4} m
Finger width	10^{-2} m
Football field length	10^2 m
Height of Mt. Everest [see Fig. 1–8b]	10 ⁴ m
Earth diameter	10^7 m
Earth to Sun	10^{11} m
Earth to nearest star	10^{16} m
Earth to nearest galaxy	10^{22} m
Earth to farthest galaxy visible	10^{26} m

[†]Modern measurements of the Earth's circumference reveal that the intended length is one-fiftieth of 1%. Not bad!

[‡]The new definition of the meter has the effect of giving the speed of light the e: 299,792,458 m s.

Copyright © 2005 Pearson Prentice Hall, Inc.

TABLE 1–4 Metric (SI) Prefixes

Prefix	Abbreviation	Value
yotta	Y	10 ²⁴
zetta	Z	10^{21}
exa	Е	10^{18}
peta	Р	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	М	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	с	10^{-2}
milli	m	10^{-3}
micro [†]	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	а	10^{-18}
zepto	Z	10 ⁻²¹
yocto	у	10 ⁻²⁴

[†] μ is the Greek letter "mu."

Copyright © 2005 Pearson Prentice Hall, Inc.

Time

Converting Units

Conversion factors:

1 km = 1000 m 1 h = 3600 s $1 \text{ mi} = 1609 \text{ m} \quad (\text{mi} - \text{miles})$ $1 \text{ in.} = 2.54 \text{ cm} \quad (\text{in.} - \text{inches})$ $1 \text{ ft} = 12 \text{ in.} \quad (\text{ft} - \text{foot})$ 1 mi = 5280 ft

Example: Convert 55 mi/h (or mph) to meters per second (m/s)

$$55\frac{\mathrm{mi}}{\mathrm{h}} = \left(55\frac{\mathrm{mi}}{\mathrm{h}}\right) \left(\frac{1609\mathrm{m}}{\mathrm{mi}}\right) \left(\frac{\mathrm{h}}{3600\mathrm{s}}\right) = 25\frac{\mathrm{m}}{\mathrm{s}}$$

In class: convert 5.0 m/s to km/h $5\frac{m}{h} = \left(5\frac{m}{s}\right)\left(\frac{0.001 \text{ km}}{m}\right)\left(\frac{3600 \text{ s}}{h}\right) = 18\frac{\text{ km}}{h}$

Rough estimate made by rounding off all numbers to one significant figure

Estimate the volume of our textbook 1.

width: 20 cm height: 30 cm depth: 2 cm

 $V \approx (20 \text{ cm}) x (30 \text{ cm}) x (2 \text{ cm}) = 1 x 10^3 \text{ cm}^3$

2. Estimate the thickness of a piece of paper of our textbook 1 piece of paper = 2 pages book has around 500 pages and is about 2 cm thick

1 piece of paper $\rightarrow x$ 250 pieces $\rightarrow 2$ cm

$$x = \frac{2cm}{250} = 0.008cm \sim 0.1mm$$

Dimensional Analysis

Dimensional analysis

useful technique to check if a relationship is incorrect

Position x is given in mTime t is given in sVelocity v is given in m/sAcceleration a is given in m/s^2

Dimensionally WRONG!

v = at

Dimensionally right

Extra problems

- 1. Exercises
- A: Calculate the area of a rectangle 4.5 cm by 3.25 cm
- B: Do 0.00324 and 0.00056 have the same number of significant figures?
- C: How many significant figures are in 1.23, 0.123, 0.0123
- 2. Would a driver at 15m/s in a 35mi/h zone be exceeding the speed limit?

Revision of Chapter 1

Measurement – uncertainty; <u>significant figures</u> <u>Scientific notation</u> <u>Units, SI:</u> meter, kilogram, second <u>Converting units</u>

Dimensional Analysis

useful way to find out if an equation is **INCORRECT**

Time t is given in SVelocity v is given in m/sAcceleration a is given in m/s^2

Dimensionally WRONG!

v = at

Dimensionally right