Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

He noticed that a constant current in X produced a constant magnetic field which produced NO current in Y. BUT, when the current was starting or stopping, it did produce a current in Y.

Therefore: a constant magnetic field produces NO current, but a changing magnetic field can produce an electric current – INDUCED CURRENT.
Induced EMF

Therefore, a changing magnetic field induces an emf.
Magnetic flux

The induced emf in a wire loop is proportional to the rate of change of magnetic flux through the loop.

Magnetic flux:

\[\Phi_B = \int \vec{B} \cdot d\vec{A} \]

\(d\vec{A}\) is a vector of magnitude \(dA\) that is perpendicular to a differential area \(dA\).

\[\Phi_B = B_\perp A = BA \cos \theta \]

Unit of magnetic flux: weber, Wb.

1 Wb = 1 T \cdot m^2

Ex. A square loop of wire 10.0 cm on a side is in a 1.25-T magnetic field \(B\). What are the maximum and minimum values of flux that can pass through the loop?

0.0125 Wb and 0
Faraday’s Law and Lenz’s Law

Faraday’s law of induction:

[1 loop]

\[\mathcal{E} = - \frac{\Delta \Phi_B}{\Delta t} \]

[\[\mathcal{E} = - \frac{d \Phi_B}{dt} \]

[N loops]

\[\mathcal{E} = - N \frac{\Delta \Phi_B}{\Delta t} \]

\[\mathcal{E} = - N \frac{d \Phi_B}{dt} \]

The minus sign gives the direction of the induced emf:

Lenz’s Law: A current produced by an induced emf moves in a direction so that the magnetic field it produces opposes the original change in flux.

Copyright © 2005 Pearson Prentice Hall, Inc.
Magnetic Flux

Magnetic flux will change if the area of the loop changes:

(a)
(b) Flux through coil is decreased because A decreased

Magnetic flux will change if the angle between the loop and the field changes:

(a) Maximum flux
(b) Zero flux

Copyright © 2005 Pearson Prentice Hall, Inc.
Ex. In which direction is the current induced in the loop for each situation?

(a) Counterclockwise
(b) Clockwise
(c) Counterclockwise
(d) No current
(e) Counterclockwise
Emf and induce current

Ex. A square coil of wire with side L=5.00 cm contains 100 loops and is positioned perpendicular to a uniform 0.600-T magnetic field (see figure). It is quickly pulled from the field at constant speed (moving perpendicular to B) to a region where B drops abruptly to zero. At t=0, the right edge of the coil is at the edge of the field. It takes 0.100 s for the whole coil to reach the field-free region. The coil’s total resistance is 100Ω. Find (a) the rate of change in flux through the coil and (b) the emf and current induced. (c) How much energy is dissipated in the coil? (d) What was the average force required?

\[a) -1.50 \times 10^{-2} \text{ Wb/s} \]
\[b) \text{emf} = 1.50V, I = 15.0mA \]
\[c) E = Pt = (I^2R)t = 2.25 \times 10^{-3}J \]
\[d) F = \frac{W}{d} = 0.0450N \]
\[F = N(iLB) \]
EMF induced in a moving conductor

This is an ac generator:

A generator is the opposite of a motor – it transforms mechanical energy into electrical energy.

The axle is rotated by an external force such as falling water or steam.

An emf is induced in the rotating coil. A changing magnetic flux induces an electric current.

This is the most important application of Faraday’s law.

https://www.youtube.com/watch?v=gQyamjPrw-U

http://www.youtube.com/watch?v=k7Sz8oT8ou0
Transformers & Transmission of Power

Transformers are important in the transmission of electricity. Power plants are far from metropolitan areas, electricity is transmitted over long distances. Power loss in the transmission lines can be minimized if the power is transmitted at **high voltage**.

Transformers work only if the current is changing; this is one reason why electricity is transmitted as ac.

\[I = \frac{P}{V} \]

\[P = RI^2 \]

http://www.youtube.com/watch?v=WTIQ_xcp0sU&feature=related

http://www.youtube.com/watch?v=YcBgxVfD70Q&feature=related
Transformers and Transmission

A transformer consists of two coils, either interwoven or linked by an iron core. A changing emf in one induces an emf in the other.

Ac voltage in primary coil – changing magnetic field induces ac voltage in the secondary coil

\[V_S = N_S \frac{\Delta \Phi_B}{\Delta t}, \quad V_P = N_P \frac{\Delta \Phi_B}{\Delta t} \]

\[\frac{V_S}{N_S} = \frac{V_P}{N_P} \implies \frac{V_S}{V_P} = \frac{N_S}{N_P} \]

Energy must be conserved; therefore power output is equal to the power input (if there is no loss)

\[V_P I_P = V_S I_S \implies \frac{I_S}{I_P} = \frac{N_P}{N_S} \]
Ex. A transformer for home use of a portable radio reduces 120-V ac to 9.0-V ac. The secondary coil contains 30 turns and the radio draws 400 mA. Calculate (a) the number of turns in the primary coil, (b) the current in the primary and (c) the power transformed.

\[
a) \frac{V_S}{N_S} = \frac{V_P}{N_P} \Rightarrow N_P = 400 \text{ turns}
\]

\[
b) \frac{I_S}{I_P} = \frac{N_P}{N_s} \Rightarrow I_P = 0.030 A
\]

\[
c) P = I_S V_S = 3.6 W
\]
Transformers and Transmission

Ex. An average of 120kW of electric power is sent to a small town from a power plant 10 km away. The transmission lines have a total resistance of 0.40 Ohms. Calculate the power loss if the power is transmitted at (a) 240 V and (b) 24,000 V

\[a) I = \frac{P}{V} = 500 \, A \Rightarrow P_{\text{loss}} = I^2 R = 100kW \]

\[b) I = \frac{P}{V} = 5.0 \, A \Rightarrow P_{\text{loss}} = I^2 R = 10W \]
Inductance

When a changing current passes through a coil (or solenoid), a changing magnetic field flux is produced inside the coil and this in turn induces an emf.

\[\mathcal{E} = -L \frac{\Delta I}{\Delta t} \]

L is called self-inductance or simply inductance. Its magnitude depends on the size and shape of the coil.

Unit: henry (H) where 1H = V.s/A = Ωs
A charged capacitor stores electric energy; the energy stored is equal to the work done to charge the capacitor.

\[\Delta W = V \Delta q \Rightarrow W = \frac{V_f}{2} Q \]

\[PE = \frac{1}{2} Q V = \frac{1}{2} CV^2 = \frac{1}{2} \frac{Q^2}{C} \]

For parallel plates

\[C = \varepsilon_0 \frac{A}{d} \]

\[\Rightarrow PE = \frac{1}{2} CV^2 = \frac{1}{2} \varepsilon_0 E^2 Ad \]

energy density = \frac{PE}{volume} = \frac{1}{2} \varepsilon_0 E^2

To bring two equal charges close together (as when charging the capacitor), we need to do work, we inject energy. Thus, energy is associated with the presence of an electric field.
Energy Stored in a Magnetic Field

The energy stored is an inductance carrying a current I is

$$PE = \frac{1}{2} LI^2$$

$$\frac{1}{2} LI^2 = \frac{1}{2} \left(\frac{\mu_0 N^2 A}{l} \right) \left(\frac{Bl}{\mu N} \right)^2$$

$$\frac{1}{2} LI^2 = \frac{1}{2} \frac{B^2}{\mu_0} Al$$

energy density = $\frac{1}{2} \frac{B^2}{\mu_0}$

*) To bring two wires with opposing current close together, we need to do work, we inject energy. Thus, energy is associated with the magnetic field.

*) When the current decreases/increases in an inductor, the creation of a magnetic field requires energy from the electrons that are flowing.