Electric Field
.

Many common forces are “contact forces”. But gravitational and electrical forces
act over a distance, which was a difficult idea in the past. It helps to think in

terms of FIELD as developed by Michael Faraday.

The electric field extends outward from a charge and permeates all space.

UNITS: N/C
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The field concept can also be applied to the gravitational force.
A gravitational field exists for every object that has mass

It is the force per unit mass.




Electric Field
.

Many common forces are “contact forces”. But gravitational and electrical forces
act over a distance, which was a difficult idea in the past. It helps to think in
terms of FIELD as developed by Michael Faraday.

The electric field extends outward from a charge and permeates all space. A 2nd
charge placed near it feels a force exerted by the electric field there.

The electric field is the force on a small charge, divided by the
charge: The charge (test charge) is so small that it does not
affect the other particles which create the field UNITS: N/C

F:qu—ZQ: Ezkg /()

r F and E have the

same direction if
g is +, but opposite
if qis -
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Photocopy machine
Py —

» drum is charged positively (drum Al with a layer of selenium —
photoconductivity)

 image is focused on drum

* only black areas stay charged and therefore attract toner particles

 image is transferred to paper and sealed by heat
(2) Lens focuses image of original

(1) Charging rod or roller

S

e

Charging rod (5) Heater rollers
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Ex. A photocopy machine works by arranging positive charges (in the pattern to
be copied) on the surface of a drum, then gently sprinkling negatively charged
toner particles onto the drum. The toner particles temporarily stick to the pattern
on the drum and are later transferred to paper and melted to produce the copy.
Suppose each toner particle has a mass of 9.0x10%(-16)kg and carries an
average of 20 extra electrons to provide an electric charge. Assuming that the
electric force on a toner particle must exceed twice its weight in order to ensure
sufficient attraction, compute the required electric field strength near the surface

of the drum. gE =2mg = E =5.5x10°N/C

Ex. Calculate the magnitude and direction of the electric field at a point P which
is 30 cm to the right of a point charge Q=-3.0x10”(-6) C.

E=tZ = E=30x10°N/C

r




Superposition principle for electric fields: E = El + E? T g

Ex. Two point charges are separated by a distance of 10.0 cm. One has a
charge of —25uC and the other +50uC. (a) Determine the direction and
magnitude of the electric field at a point P between the two charges that is 2.0
cm from the negative charge. (b) If an electron is placed at rest at P and then
released, what will be its initial acceleration (direction and magnitude)?

Q1=-25pC P
le—r1 = 2.0 cm—~{—= r» =8.0cm

(a)

Q

E, (b)
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Field due to negative charge points TO it
Field due to positive charge points AWAY from it

m, =9.11x10"" kg

E=63x10N/C

a=1.1x10"m/s*




Ex. Calculate the total electric field (a) at point Aand (b) point B due to both
charges.

EAlaEAzaEAx»EAy
E,=45x10°N/C
¢=76°

Ly =Ly,
E,=2F, cos0
E,=3.6x10°N/C

o 26 cm 26 cm 0/ >\ o

0, =+50 uC Q;=-50 uC

Copyright © 2005 Pearson Prentice Hall, Inc.




Net electric field due to three charged particles

Figure 22-7a shows three particles with charges ¢, = +20,
» = —2Q,and g3 = —40, each a distance d from the origin.
What net electric field E is produced at the origin?

KEY IDEA

Charges g, ¢,, and g; produce electric field vectors E], EZ,
and E;, respectively, at the origin, and the net electric field is
the vector sum E = E; + E, + E;. To find this sum, we first
must find the magnitudes and orientations of the three field
vectors.

Magnitudes and directions: To find the magnitude of E,,
which is due to g,, we use Eq. 22-3, substituting d for r and
20 for g and obtaining

1 20

E, = 3
! 471’80 dZ

Similarly, we find the magnitudes of Ez and E} to be

a O\ /O A

d d

30° E
‘\Q) >

d

Find the net field
at this empty point.

(a)

B

\— Field toward

o
\30 n

130°_,

\30°
730°
E) + By

Field away
(b)

&
El P Field toward

()
Fig. 22-7 (a) Three particles with charges g, g,, and g;are at thc

same ¢ distance d from the origin. (b) The electric field vectors El Ev.

and Eo at the origin due to thc three partlclcs (c) The electric field
vector E3 and the vector sum E + E, at the origin.

1 20 1 40
Ez = and E3 — Fg(}?.

477'80 d2
We next must find the orientations of the three electric
field vectors at the origin. Because ¢, is a positive charge,
the field vector it produces points directly away from it,
and because g, and g, are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially
just as we added force vectors in Chapter 21. However, here
we can use symmetry to simplify the procedure. From Fig.
22-7b, we see that electric fields E1 and Ez have the same di-
rection. Hence, their vector sum has that direction and has
the magnitude

1 20 1 20
3F D= +
SR dmey, d> = dme, d?
_ 1 40
477'80 dz ¢

which happens to equal the magnitude of field E;.

We must now combine two vectors, E; and the vector
sum El + E}, that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig.
22-Tc. From the symmetry of Fig. 22-7¢, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
field E at the origin is in the positive direction of the x axis
and has the magnitude

E = 2E,, = 2E;cos 30°

6.930

_ 1 40 _
=(2) T (0.866) = T (Answer)




Field Lines
.

The electric field can be represented by field lines. These lines start on a
positive charge and end on a negative charge.

The number of field lines starting (ending) on a positive (negative) charge
is proportional to the magnitude of the charge.

The electric field is stronger where the field lines are closer together.

N |/

NN
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Field Lines
.

Electric dipole: two equal charges, opposite in sign:

The direction of the electric
field at any point is tangent
to the field line.

(b)

S

=

The electric field between two closely spaced,
oppositely charged parallel plates is constant.

Positive test charge between plates feel 1
repulsion from positive plate and attraction from
negative p|ate 5 Pearson Prentice Hall, Inc.




Electric Field due to Electric Dipole H

Ey — E

1 g 4 q
477'80 "(2_*_) 477'80 r%_)

q q

dme(z — 3d)*  dmey(z + 3d)?

q
E —
Ad1reoz? (

(-G 0-6G)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole —that is, at distances such
that z > d. At such large distances, we have d/2z < 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with
L gk

g 277'80 Z3 .

Dipole

center

E= (22-8)




Electric Field due to Electric Dipole H

1
B ga

277'80 Z3

The product gd, which involves the two intrinsic properties ¢ and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment
p of the dipole. (The unit of p is the coulomb-meter.) Thus, we can write Eq.22-8 as

1
E_ p

2’7780 Z3

! | of whether they lie on the dipole axis; here r is the distance

TT E for a dipole varies as 1/r3 for all distant points, regardless
Dipole between the point in question and the dipole center.

center
' @ -




Electric dipole and atmospheric sprites

Sprites (Fig. 22-9a) are huge flashes that occur far above a
large thunderstorm. They were seen for decades by pilots
flying at night, but they were so brief and dim that most pi-
lots figured they were just illusions. Then in the 1990s sprites
were captured on video. They are still not well understood
but are believed to be produced when especially powerful
lightning occurs between the ground and storm clouds, par-
ticularly when the lightning transfers a huge amount of neg-
ative charge —¢q from the ground to the base of the clouds
(Fig. 22-9b).

Just after such a transfer, the ground has a complicated
distribution of positive charge. However, we can model the
electric field due to the charges in the clouds and the ground
by assuming a vertical electric dipole that has charge —q at
cloud height # and charge +¢ at below-ground depth & (Fig.
22-9c¢). If g = 200 C and h = 6.0 km, what is the magnitude of
the dipole’s electric field at altitude z; = 30 km somewhat
above the clouds and altitude z, = 60 km somewhat above the
stratosphere? . -

KEY IDEA

We can approximate the magnitude E of an electric dipole’s elec-
tric field on the dipole axis with Eq.22-8.

Calculations: We write that equation as
1 q(2h)

2me

where 24 is the separation between —q and +q in Fig. 22-9¢. For
the electric field at altitude z; = 30 km, we find
1 (200 C)(2)(6.0 X 10° m)
27y (30 X 10° m)?
= 1.6 X 103 N/C.

(Answer)
Similarly, for altitude z, = 60 km, we find

E=2.0X102N/C. (Answer)

As we discuss in Section 22-8, when the magnitude of an
electric field exceeds a certain critical value E_, the field can
pull electrons out of atoms (ionize the atoms), and then the
freed electrons can run into other atoms, causing those
atoms to emit light. The value of E_ depends on the density
of the air in which the electric field exists. At altitude z, = 60
km the density of the air is so low that E = 2.0 X 10> N/C
exceeds E_, and thus light is emitted by the atoms in the air.
That light forms sprites. Lower down, just above the clouds
at z; = 30 km, the density of the air is much higher, E =
1.6 X 10° N/C does not exceed E_, and no light is emitted.
Hence, sprites occur only far above storm clouds.

Cloud

Charge
transfer h

(b) Ground (() i » +q

Fig. 22-9 (a) Photograph of a sprite. (Courtesy NASA) (b)
Lightning in which a large amount of negative charge is trans-
ferred from ground to cloud base. (¢) The cloud—ground system
modeled as a vertical electric dipole.




Electric Field due to Line of Charge H”

a Linear charge
dE cos QI/ . dGIlSIty

9/ The perpendicular

components just dC[ = A ds
cancel but the parallel

components add.

1 1
JE — dqg )\c2is

dmre, 1’ dmrey 1

1 Ads
ey (22 + R?)

dE

All the components of dE that are perpendicular
to the z-axis cancel! Only thos along the z-axis
survive




Electric Field due to Line of Charge H

Z
y = (Z2 4 R2)1/2

Cos 0 =

The perpendicular
components just

ZA
cancel but the parallel dE cos 6 = ds
components add. 47780(Z2 + R2)3/2

J ZA szR
E Tm—
dE cos 6 Tmen@ + B )y ds

ZA(27R)
dey(z2 + R?)?

Since A is the charge per length of the ring, the term A(27R) in Eq. 22-15 is g, the
total charge on the ring. We then can rewrite Eq.22-15 as

_ 4z
L= 4780(22 I R2)3/2 (22-16)




Electric Field due to Line of Charge H

dE cos GI/ 3 . C] <
Amell iR

B

9/1 The perpendicular

components just
cancel but the parallel
components add.

(22-16)

If the charge on the ring is negative, instead of positive as we have assumed, the

magnitude of the field at P is still given by Eq. 22-16. However, the electric field
vector then points toward the ring instead of away from it.

Let us check Eq.22-16 for a point on the central axis that is so far away that

2 R. For such a point, the expression z> + R? in Eq. 22-16 can be approximated
as z2,and Eq.22-16 becomes

V. 1
J E = q (charged ring at large distance)

477'80 Zz

This is a reasonable result because from a large distance, the ring
“looks like” a point charge.




Electric field of a charged circular rod

Figure 22-11a shows a plastic rod having a uniformly distrib-
uted charge —Q.The rod has been bent in a 120° circular arc
of radius r. We place coordinate axes such that the axis of
symmetry of the rod lies along the x axis and the origin is at
the center of curvature P of the rod. In terms of Q and r,
what is the electric field £ due to the rod at point P?

KEY IDEA

Because the rod has a continuous charge distribution, we
must find an expression for the electric fields due to differ-
ential elements of the rod and then sum those fields via
calculus.

An element: Consider a differential element having arc
length ds and located at an angle @ above the x axis (Figs.
22-11b and c). If we let A represent the linear charge density of
the rod, our element ds has a differential charge of magnitude

dq = Ads. (22-18)

The element’s field: Our element produces a differential
electric field dE at point P, which is a distance r from the
element. Treating the element as a point charge, we can
rewrite Eq.22-3 to express the magnitude of dE as

1 dg 1 Ads 22.19
2 Amey, 12 b

B 4aey 1

The direction of dE is toward ds because charge dgq is
negative.

Symmetric partner: Our element has a symmetrically
located (mirror image) element ds” in the bottom half of the rod.
The electric field dE’ set up at P by ds’ also has the magnitude
given by Eq. 22-19, but the field vector points toward ds’ as
shown in Fig. 22-11d. If we resolve the electric field vectors of ds
and ds’ into x and y components as shown in Figs.22-11e and f, we
see that their y components cancel (because they have equal
magnitudes and are in opposite directions). We also see that their
x components have equal magnitudes and are in the same
direction.

Summing: Thus, to find the electric field set up by the rod,
we need sum (via integration) only the x components of the
differential electric fields set up by all the differential ele-
ments of the rod. From Fig. 22-11f and Eq. 22-19, we can write
the component dE, set up by ds as

A
—-cos 0 ds.

1
dE, = dE cos 6 = 0

(22-20)

Equation 22-20 has two variables, # and s. Before we can
integrate it, we must eliminate one variable. We do so by
replacing ds, using the relation

ds = rdé,

in which d#@ is the angle at P that includes arc length ds
(Fig. 22-11g). With this replacement, we can integrate Eq.
22-20 over the angle made by the rod at P, from # = —60° to
0 = 60°; that will give us the magnitude of the electric field
at P due to the rod:

G A
E= | dE, = ———5cosfrdo
—60° 471’80 T

A o A o
= cos 0df = [sin 9]
4aregr J-e0 4aregr —60°

S [sin 60° — sin(—60°)]
4aregr

- L7 : (22-21)
4qregr
(If we had reversed the limits on the integration, we would
have gotten the same result but with a minus sign. Since the
integration gives only the magnitude of E. we would then
have discarded the minus sign.)

Charge density: To evaluate A, we note that the rod
subtends an angle of 120° and so is one-third of a full circle.
Its arc length is then 277/3, and its linear charge density
must be

_ charge O

04770

length 27773 r

Substituting this into Eq.22-21 and simplifying give us

£ = (173)(0477Q)

daregr?

0.83
= Q2 5 (Answer)
4aregr
The direction of E is toward the rod, along the axis of symmetry
of the charge distribution. We can write E in unit-vector nota-
tion as
0.830 -

il
k5
4aregr

B =




This negatively charged rod But we can treat this Here is the field the
is obviously not a particle. element as a particle. element creates.

Plastic rod Y N ds

of charge -Q A

(¢)

These x components add.
These y components just Our job is to add all such
cancel, so neglect them. components.

Symmetric Symmetric Symmetric
element ds’ element ds’ element ds’

(d)

Here is the field created by
the symmetric element,

same size and angle. We use this to relate the

element's arc length to
the angle that it subtends.

B

(g)

Flg. 22-11 (a) A plastic rod of charge —Q is a circular section of radius r and central angle 120°;
point P is the center of curvature of the rod. (b)—(c) A differential element in the top half of the rod,
atan angle fto the x axis and of arc length ds, sets up a differential electric field dE at P. (d) An ele-
ment ds’, symmetric to ds about the x axis,sets up a field dE” at P with the same magnitude. (e)—(f)
The field components. (g) Arc length ds makes an angle d6 about point P.




Electric Field due to Charged Disk —

Figure 22-13 shows a circular plastic disk of radius R that has a positive surface
charge of uniform density ¢ on its upper surface (see Table 22-2). What is the
electric field at point P, a distance z from the disk along its central axis?

This is what we found for the ring

(22-16)

The disk is equivalent to a ring where r goes from 0 to R,

({1

SO we can substitute “q” above by

dq = odA = o 27rdr)

zo2ar dr oz 2r dr

dE = =
dae(z° * P~ ap ey (2° F 17"

R
Fig. 22-13 — de — ZZ j i o e Wl 7 V)
Eo JO




Electric Field due to Charged Disk H”

= JdE— T J i o g Wl V7. L7 5

To solve, we change variables as

X ={z24 ) dX = (2r) dr

Xm+1
m + 1

[ xmax -

B = o7 |:(Z2 1 ’12)—1/2 :|R
480 )

Fig. 22-13




Electric Fields and Conductors —

The static electric field inside a conductor is zero — if it were not, the charges
would move.

The net charge on a conductor is on its surface.
Conductor

Suppose a positive charge Q is surrounded by
an isolated uncharged metal conductor whose
shape is a spherical shell.

There can be no field inside the metal, so —Q
is induced on the inner surface and +Q exists
on the outer surface.

The shell is neutral

The electric field is perpendicular to the
surface of a conductor — if it were not,
charges would move.

Good conductor



y Lag —

Shielding and safety in a storm
A neutral hollow metal box is
placed between two parallel
charged plates as in (a). What is
the field like inside the box?

The electrons in the metal can move
freely to the surface, hence the field
inside the hollow metal box is zero. A
conducting box used in this way is an
effective device for shielding delicate
instruments from unwanted external (a)
electric fields. Copyright © 2005 Pearson Pre
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It also explains why it is safe to be inside a car during a lightning storm.




Problems to Solve ”
-

Chapter 22:
8,9, 11,15, 19, 21, 24, 25, 35, 40, 46




