16-2 Types of Waves

Waves are of three main types:

1. Mechanical waves. These waves are most familiar because we encounter
them almost constantly; common examples include water waves, sound waves,
and seismic waves. All these waves have two central features: They are gov-
erned by Newton’s laws, and they can exist only within a material medium,
such as water, air, and rock.

Electromagnetic waves. These waves are less familiar, but you use them
constantly; common examples include visible and ultraviolet light, radio and
television waves, microwaves, X rays, and radar waves. These waves require no
material medium to exist. Light waves from stars, for example, travel through
the vacuum of space to reach us. All electromagnetic waves travel through a
vacuum at the same speed ¢ = 299 792 458 m/s.

Matter waves. Although these waves are commonly used in modern tech-
nology, they are probably very unfamiliar to you. These waves are associated
with electrons, protons, and other fundamental particles, and even atoms and
molecules. Because we commonly think of these particles as constituting mat-
ter, such waves are called matter waves.

Much of what we discuss in this chapter applies to waves of all kinds.
However, for specific examples we shall refer to mechanical waves.
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A wave may start with a single pulse -- figure.
Cohesive forces between adjacent sections of

the rope cause the pulse to travel outward. It is
Y similar in other media.
| T AAAAAAAAAAAAAAAAAAAAAA Continuous or periodic waves start with
(b) vibrations too, but they are continuous.
3 T The source of any wave is a vibration.
B ll . TS If the vibration is SHM, then the wave will have
(©) a sinusoidal shape.
N
A
(d)
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Watch this spot in this
series of snapshots.
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Wave characteristics:
Amplitude, A: maximum height of a crest or depth of a trough

« Wavelength, A: distance between successive crests, or any two successive
identical points

* Frequency f: number of crests (or complete cycles) that pass a given point
per unit of time. Period T: time elapsed between two successive crests

» Wave velocity: velocity at which wave crests move. A wave crest travels a
distance of one wavelength in a time equal to one period. |y, = 1 /T = ﬁf




 waveMotion |
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Wave velocity: velocity at which wave crests move. A wave crest travels a
distance of one wavelength in a time equal to one period. v=A/T = Zf

The speed of a wave on a stretched string or cord depends on the the tension
in the cord as
k., T

m/ L

y =

CAREFUL: wave velocity is different from the velocity of a patrticle in the
medium!

Ex. 11-11 A wave whose wavelength is 0.30 m is traveling down a 300-m-long
wire whose total mass is 15 kg. If the wire is under tension of 1000 N, what are
the speed and frequency of this wave?

v=140m/s and f=470Hz




Transverse and Longitudinal Waves

The motion of particles in a wave can
either be perpendicular to the wave
direction (transverse) or parallel to it
(longitudinal).

~— Wavelength ——

Compression  Expansion

() Sound waves are longitudinal waves:

<~— Wavelength —>

(b)
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membrane compression  Expansion
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Anqular Wave Number
o —

Amplitude snapshot of the wave at time ¢ = (

Oscillating
Displacement term

} Phase W

y(x,t) = ym sm (kx a)t)
Angular
wave IlllIanI

Time

Position Angular
frequency

Y SInkx; =y, sin k(x; + A)
= y,,sin(kx; + kA)

A sine function begins to repeat itself when its angle (or argument) is increased
by 27 rad, so in Eq. 16-4 we must have kA = 27, or

2ar
k = —— (angular wave number)

A




Angular Frequency H”

x=0
Oscillating This is a graph,
Displacement term not a snapshot.

} Phase W

y(x,t) = ym sm (kx a)t)
Angular X Time

Amplitude

wave IlllIanI

Angular ¥(0,1) =y, sin(— wr)
frequency = —Yy,, SIn wt

Position

—y,Sinwt; = —y,, sinw(t; + T)
= —y,,Sin(wt; + oT)

This can be true only if 7T = 27

2T

@ = —— (angular frequency)

T




Phase Constant ”
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The effect of the
phase constant ¢
Is to shift the wave.

y =y, sin(kx — wt + ¢)

phase constant ¢

¢ = +m5 rad
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= = Af  (wave speed).

Y  Ax
Wave moves to the right: +v ’«L

y(x,t) =y, sin(kx — wt).

/ \V\ne | 9 AI
Wave at =0

Wave moves to the left; -v

y(x,t) = y,, sin(kx + wt)




Transverse wave, amplitude, wavelength, period, velocity

A wave traveling along a string is described by
y(x,t) = 0.00327 sin(72.1x — 2.72¢), (16-18)

in which the numerical constants are in SI units (0.00327 m,
72.1 rad/m, and 2.72 rad/s).

(a) What is the amplitude of this wave?

KEY IDEA

Equation 16-18is of the same form as Eq. 16-2,

Y = ysin(kx — wt), (16-19)

so we have a sinusoidal wave. By comparing the two equa-
tions, we can find the amplitude.
Calculation: We see that

V,n = 0.00327 m = 3.27 mm.

(b) What are the wavelength, period, and frequency of
this wave?

(Answer)

Calculation: The speed of the wave is given by Eq. 16-13:
® 2.72 rad/s

v=—=

k  72.1rad/m
=3 77 cm/s:

= (0.0377 m/s

(Answer)

Because the phase in Eq. 16-18 contains the position variable x,
the wave is moving along the x axis. Also, because the wave
equation is written in the form of Eq. 16-2, the minus sign in
front of the wf term indicates that the wave is moving in the pos-
itive direction of the x axis. (Note that the quantities calculated
in (b) and (c) are independent of the amplitude of the wave.)

(d) What is the displacement y of the string at x = 22.5 cm
andr = 18.9s?

Calculations: By comparing Eqs. 16-18 and 16-19, we see
that the angular wave number and angular frequency are

k=721rad/m and o =2.72rad/s.
We then relate wavelength A to k via Eq. 16-5:

2ar _ 2arrad
k  72.1rad/m
= (0.0871 m = 8.71 cm.

A

(Answer)
Next, we relate 7'to w with Eq. 16-8:

27 _ 2q4rrad _
o  272radls

T= 2315, (Answer)

and from Eq. 16-9 we have

1
f=7_

(Answer)

(c) What is the velocity of this wave?

Calculation: Equation 16-18 gives the displacement as a
function of position x and time ¢. Substituting the given val-
ues into the equation yields

y = 0.00327 sin(72.1 X 0.225 — 2.72 X 18.9)
= (0.00327 m) sin(—35.1855 rad)
= (0.00327 m)(0.588)
=0.00192 m = 1.92 mm.

Thus, the displacement is positive. (Be sure to change your
calculator mode to radians before evaluating the sine. Also,
note that we do not round off the sine’s argument before evalu-
ating the sine. Also note that both terms in the argument are
properly in radians, a dimensionless quantity.)

(Answer)




Reflection and Transmission of Wave H

/S N— When a wave strikes an obstacle or come to
the end of the medium it is traveling in, at least
~ part of it is reflected. Echo is an example of

/B /" reflection

http://www.kettering.edu/~drussell/Demos/reflect/reflect.html

,\f / A wave hitting an obstacle will be reflected
(a), and its reflection will be inverted.
\/J ~/~ " (action and reaction)

A wave reaching the end of its medium, but

=='m\\,//mm’ A where the medium is still free to move, will

be reflected (b), and its reflection will be

(a) (b) upright. Light Heavy
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A wave encountering a denser medium willbe -/ | e
: " I
partly reflected and partly transmitted; if the
wave speed is less in the denser medium, the () ,

: Transmitted
wavelength will be shorter, because f does not pilse
change — VA

SN
Reflected
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pulse



nterference;Principle of Superpositio —

The superposition principle says that when two waves pass through the
same point, the displacement is the arithmetic sum of the individual
displacements.

In the figure below, (a) exhibits destructive interference and (b) exhibits
constructive interference.

Pulses far apart,
approaching

Pulses overlap
precisely

Pulses far apart,
receding
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These figures show the sum of two waves.

JANVANVA

T\ \V v

TANVANYA

"\ VU U

JTANVANVAY

(a) they add constructively, the two waves are said to be in phase;
(b) they add destructively, the two waves are said to be out phase;
(c) they add partially destructively.

If the amplitudes of two interfering waves are not equal, fully destructive
interference does not occur.

VAR VAR

JANVANVAY

VAR VAR

/\_/\_/
VvV VvV VV

/NN

/' \J \J

JANVANNA

(b)
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(c)
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yi(x, ) = y,sin(kx — wt) = y(x, 1) =y, sin(kx — ot + @)

V' (x, 1) = yi(x, 1) + yy(x, 1)
= VYm sin(kx T a)t) W sin(kx — wt + ¢)

sin « + sin 8 = 2sin3(a + B) cos 3(a — B)

y'(x, 1) = [2y,, cos 2] sin(kx — wt + 3¢p)

i .
SYnlCeen  [anplinde) phase constant is 3¢




y'(x,t) = ]2y, COS %qb] sin(kx — wt + %gb)

2y,,cos3pl  (amplitude) phase constant is ;¢

Being exactly in phase, Being exactly out of This is an intermediate
the waves produce a phase, they produce situation, with an
large resultant wave. a flat string. intermediate result.

y y y

—_—

(% ) Y1 (% 0) nx )  ylx o)
and
A KA
/ | x | / \.X/ \-/‘ x

3

3 (%, 1)

fully

fully constructive interference ~ destructive interference  intermediate interference
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Interference of two waves, same direction, same amplitude

Two identical sinusoidal waves, moving in the same
direction along a stretched string, interfere with each other.
The amplitude y,, of each wave is 9.8 mm, and the phase dif-
ference ¢ between them is 100°.

(a) What is the amplitude y,, of the resultant wave due to the
interference, and what is the type of this interference?

KEY IDEA

These are identical sinusoidal waves traveling in the same
direction along a string, so they interfere to produce a sinu-
soidal traveling wave.

Calculations: Because they are identical, the waves have
the same amplitude. Thus, the amplitude y,, of the resultant
wave is given by Eq. 16-52:

Vi = 2y,, cos 1l = 1(2)(9.8 mm) cos(100°/2)]

= 13 mm. (Answer)

We can tell that the interference is intermediate in two ways.
The phase difference is between 0 and 180°, and, correspond-
ingly, the amplitude y,, is between 0 and 2y,, (= 19.6 mm).

(b) What phase difference, in radians and wavelengths, will
give the resultant wave an amplitude of 4.9 mm?

Calculations: Now we are given y,, and seek ¢. From Eq.
16-52,

_ 1
yr’n = lzym COsS E(bL
we now have

4.9 mm = (2)(9.8 mm) cos 3¢,

which gives us (with a calculator in the radian mode)

4.9 mm
(2)(9.8 mm)
= *2.636rad = +2.6rad.

¢ =2cos™?

(Answer)

There are two solutions because we can obtain the same re-
sultant wave by letting the first wave lead (travel ahead of)
or lag (travel behind) the second wave by 2.6 rad. In wave-
lengths, the phase difference is

b _ +2.636 rad
27rrad/wavelength 27 rad/wavelength

= *0.42 wavelength. (Answer)




Standing Waves, Resonance —

Antinode

Node Antinode
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If you shake one end of a cord and the other is
kept fixed, waves will travel in both directions.
If you vibrate at the right frequency, the two
traveling waves will interfere in such a way that
a large-amplitude standing wave is produced.
Standing waves do not appear to travel.

Nodes are points of destructive interference,
where the cord remains still all the time

Antinodes are points of constructive interference,
where the cord oscillates with maximum

amplitude.

(a) Lowest frequency
(b) Twice the lowest frequency
(c) Three times the lowest frequency




Standing Waves, Resonance —

Antinode

To analyze a standing wave, we represent the two combining waves with the
equations
vi(x, 1) = y, sin(kx — wt) (16-58)

]
and va(x, 1) = y,, sin(kx + wt). (16-59)

The principle of superposition gives, for the combined wave,
v'(x,t) = yi(x, 1) + yo(x, 1) = y,, sin(kx — wt) + y,, sin(kx + wt).

Applying the trigonometric relation of Eq. 16-50 leads to Fig. 16-17 and

y'(x,1) = [2y,, sin kx| cos wt. (16-60)
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Standing Waves, Resonance —

The frequencies at which standing waves are
produced are called natural frequencies or
resonant frequencies.

The lowest frequency is called fundamental
frequency. It corresponds to one antinode (or
loop). The next mode of vibration has two loops.
See wavelength in figure.

Natural frequencies are also called harmonics.

Fundamental or first harmonic, f; First harmonic = fundamental
— Second harmonic or first overtone = twice the
> fundamental; etc

\ For a vibrating string overtones are whole-
First overtone or second harmonic, f, = 2f, number (integral) multiples of the fundamental.

e S e
”\ X y’ \|
=
1

Second overtone or third harmonic, f3 = 3f;

(b)
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Standing Waves, Resonance —

nAi,

In general we can write: L = 5 n=1223,...
Therefore, the wavelengths and frequencies of standing waves are:
— '1" 2’ 3’ ..

7/

v Mpp =~ e o n=123

Because a standing wave is equivalent to two traveling P
waves moving in opposite directions, the concept of wave V= T
velocity still makes sense m/ L

Ex 11-14 A piano string is 1.10 m long and has a mass of 9.00 g. (a) How
much tension must the string be under if it is to vibrate at a fundamental
frequency of 131 Hz? (b) What are the frequencies of the first four

harmonics? 5y 679 N (b) 131, 262, 393, and 524 Hz




