Chapter 15 — Oscillations
e -

Many objects oscillate/vibrate
Examples: pendulum, strings of a guitar, atoms in a molecule, etc.

Waves have as a source a vibration.
Examples of waves: ocean waves, waves on a string, sound waves,

electromagnetic waves — light.
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Simple Harmonic Oscillator - SHO —

If an object vibrates or oscillates back and
forth over the same path, each cycle

taking the same amount of time, the motion
is called periodic.

Assume that the surface is frictionless.

There is a point where the spring is neither
stretched nor compressed; this is the
equilibrium position. We measure
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displacement from that point (x = 0).

The force exerted by the spring depends on
the displacement (Hooke’ s law):

k is the spring constant F = — kx

The minus sign on the force indicates that it is
a restoring force — it is directed to restore the
mass to its equilibrium position.

The force is not constant, so the acceleration is not constant either




Simple Harmonic Motion — SHM <

,,,,,, i Any vibrating system for which the restoring force is
SN V=10 . . ] c .
g vt | 7 directly proportional to the negative of the displacement is

@) g said to exhibit: simple harmonic motion (SHM).
T Such system called: simple harmonic oscillator (SHO).
—— Many natural vibrations are simple harmonic.
.‘ ) vr 2 y A : A —— (ma(;(..‘in‘n;)gii)[ivc
= To study vibrational motion, we need some definitions:
x=0 . \ eper .
®) * Displacement is measured from the equilibrium point
F ~t—
Ao  Amplitude is the maximum displacement
| | * A cycle is a full to-and-fro motion
x=0 x=A
© - * Period is the time required to complete one cycle
F=0
8 AAANVAVAN «"{njxf ”"[ * Frequency is the number of cycles completed per
""""" } Crection second
(d) F==()
e T
(e) X :‘— X :‘ 0
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Simple Harmonic Motion — SHM —

If the spring is hung vertically, the
only change is in the equilibrium
position, which is at the point
where the spring force equals the
gravitational force.

ZF =0 = mg — kxo | > F=—kxg

N

XO =mg / k X NOW
measured
from here

Ex. When a family of four

with a total mass of 200 kg step (@) Gopyright © 2005 Pearson Prentce Hall, Inc

into their 1200-kg car, the car’ s springs compress 3.0 cm. (a) What is the spring
constant of the car’ s springs, assuming they act as a single spring? (b) How far
will the car lower if loaded with 300 kg rather than 200 kg?

(@) 6.5x10°N/m (b) 4.5x10°m

Ex. Which of the following represent a simple harmonic oscillator:
(a) F=-0.5x> (b) F=-23y (c) F=8.6c (d) F=-46? Only (b) and (d)




Energy in the SHO

} » » . U = lk 2
(a) =4 el A The potential energy of a spring: — oht
(v=0) 1 )
- The kinetic energy of the spring: /£ = §mv
:§nw111ax
. == The total mechanical energy: 1 1
[KE‘ TARAARY N J Itis conserved because the f — — ;)% 4+ — 2
| | | ~ system is frictionless 2 2
(b) x=-A x=0 x=A
] If the mass is at the limits of its motion, the energy is
E=3kA>  g|| potential. 1,
‘ E=—kA
Mo [= 2
© | | | If the mass is at the equilibrium point, the energy is all
x=-A x=0 x=A kinetic. 1,
=5 E -~ mvmax

T N W
E—2mv +2kx

EEJ "\ “:;‘T:‘F“iﬁ :}:‘3}*; ‘ m

—

(d) x=-A x=0| x=A

From conservation of energy, at intermediate points:

Ezlmv2 Jrlkx2 = —kA® =
2 2 2

%
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Energy in the SHO

(a) x=-A x=0 x=A
(v=0) U(1) + K(?)
Eelmp /\ / \U( )
(b) x=(—A x=(0 x=}A
K(1)
E =3 kA2 . ;
A 12 E
(c) XJ_A xLO xz\A As time changes, the
(v=0) energy shifts between
E=lmo?+ i the two types, but the

total Is constant.

(d) x=-A x=0
%
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el 1D
E=7kA
/A [
o
(©) | | \
x=-A x=0 x=A
(v=0)

(d)

%
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Energy in the SHO

NOTE: your book use the notation
X, for the amplitude, my slides use A

As position changes, the
energy shifts between
the two types, but the
total Is constant.




Energy in the SHO
gy —

From: E =lmv2 +lkx2 :lkA2 =lmv§laX

~

2= vﬁlax = (k/m)A2

max

x* ~
lmv2 +lkx2 =lkA2 — ? =£A2 ]——
2 2 2
—

m A?

Ex. A spring of stiffness constant 19.6N/m has a 0.300-kg mass attached to

it. It is on a frictionless table. The mass is pulled so that the spring is stretched
0.100 m from the equilibrium point, and released from rest. Determine:

(a) the amplitude of the horizontal oscillation, (b) the magnitude of the
maximum velocity, (c ) the magnitude of the velocity when the displacement is
0.050 m from equilibrium, (d) the magnitude of the maximum acceleration of the
mass, (e) the total energy, and (f) the kinetic and potential energies at

half amplitude.

(@)0.100m (b)0.808m/s (c)0.70m/s (d)a,, =F, /m=kA/m=6.53m/s’

max

(e)E=9.80x107J PE=25x10"J K=73x10"7J




6

A—

(b)
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Period and Sinusoidal Nature of SHM ”

https://www.youtube.com/watch?v=9r0HexjGRE4

The projection onto the x axis of an object moving in a
circle of radius A is identical to the SHM.

Therefore, we can use the period and frequency of a
particle moving in a circle to find the period and

frequency of a SHO: ~
7 e 27zA T 27A

T vmax
1, o 1
—kA"=—mv, = Al/v__ =~mlk
2 2 /

Ex. A spider of mass 0.30 g waits in its web of
negligible mass. A slight movement causes the web to

vibrate with a frequency of about 15 Hz.
value of the spring stiffness constant for

T:ZW\/E
>_ k

Notice that the

period does not
depend on A

Estimate the
the web.




Period and Sinusoidal Nature of SHM ”

9 https://www.youtube.com/watch?v=9r0HexjGRE4

v The projection onto the x axis of an object moving in a
circle of radius A is identical to the SHM.

_ | ~ . Therefore, we can use the period and frequency of a
particle moving in a circle to find the period and

frequency of a SHO: —
y
m
Vinax = 2 T—% T=27T\/—
T Vinax > k
P y 1 1 Notice that the
‘ ‘ EkAz = Em"ﬁm = A/v,.. =vVm/k | period does not
~ depend on A
(@) w=2rf
2T k
J | W = T = ? (angular frequency)

(b)
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Position as a Function of Time - SHM H”

From the figure:

cos@=x/A= x= Acosb

0 =wt = x = Acos(wt)

@ =2nf =\x=Acos(2aft)= Acos(2at/T)

5 <=5 <+ Paper motion E —
Notice that at t=0 we have x=A, and also o
at t=T. The oscillating object starts from A
rest (v=0) at its maximum displacement \ /\ E
(x=A) at t=0. 0 % , % "
The cosine function varies between ﬁT%\T/%T T S
1 and -1, so x varies between Aand -A. _4 |
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Sinusoidal Motion - SHM ”
-

Other equations for SHM are also possible, depending on the initial
conditions. For example, if at t=0 the object is at the equilibrium position

and the oscillations are begun by giving the object a push to the right (+x), then

x(1)
x=Asm(wt)= Asin(2xat/T)

/ Both sine and cosine functions are
referred to as being SINUSOIDAL.
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Ex. The displacement of an object is described 1336 the following equation,

where x is in meters and t in seconds: X = (0.30m1) cos(8.07
Determine (a) the amplitude, (b) frequency, (c ) period, (d) maximum
speed, and (e) maximum acceleration.

(a)A=030m (b)f=127Hz ()T =0.79s v__=24m/s a_ =19m/s’




Sinusoidal Motion - SHM
]

Displacemnt
at time {

The amplitudes are different,
but the frequency and

Phase
rz L period are the same.

x(1) = x,, cos(@t+ Q)

Amplitude Time

Angular Phase / \ {
frequency constant ' \ / \ /
or phase = A I
angle ot |

The amplitudes are the
same, but the frequencies
and periods are different.

Displacement

This negative value
shifts the cosine
T | curve rightward.

NVAWZA\NFA
AL | \AX

Displacement
Displacement




Velocity and acceleration

x(t) = x,,cos(wt + ¢p)  (displacement)

Displacement

dx(t) d
dt  dt

v(t) =

=y
Q
o
p—(
v
-

v(t) = —wx,, sin(wt + ¢) (velocity).

dv(t) d
T

a(t) =

[—wx,, sin(wt + ¢)]

a(t) = —w?x,, cos(wt + ¢)  (acceleration)

Acceleration

In SHM, the acceleration is proportional to the displacement but opposite in sign,
and the two quantities are related by the square of the angular frequency.




Block-spring SHM, amplitude, acceleration, phase constant

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance
x = 11 cm from its equilibrium position at x = 0 on a fric-
tionless surface and released from rest at 7 = 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

(b) What is the amplitude of the oscillation?

(c) What is the maximum speed v,, of the oscillating block
and where is the block when it has this speed?

(d) What is the magnitude a,, of the maximum acceleration
of the block?

(e) Whatis the phase constant ¢ for the motion?

(f) What is the displacement function x(7) for the
spring—block system?




Block-spring SHM, amplitude, acceleration, phase constant

A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance
x = 11 cm from its equilibrium position at x = 0 on a fric-
tionless surface and released from rest at 7 = 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

KEY IDEA

The block—spring system forms a linear simple harmonic
oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:

K 65 N/'m
= = — 9,78 rad/
& \/m \/ 0.68 kg it

~ 9.8 rad/s. (Answer)

The frequency follows from Eq. 15-5, which yields

9.78 rad/
o A _ 156Hz~ 1.6 Hz (Answer)
2arrad

The period follows from Eq. 15-2, which yields
-
1.56 Hz

= (0.64s = 640 ms. (Answer)




Block-spring SHM, amplitude, acceleration, phase constant

(b) What is the amplitude of the oscillation?

KEY IDEA

With no friction involved, the mechanical energy of the spring—
block system is conserved.

Reasoning: The block is released from rest 11 cm from
its equilibrium position, with zero kinetic energy and the
elastic potential energy of the system at a maximum. Thus,
the block will have zero kinetic energy whenever it is
again 11 cm from its equilibrium position, which means it
will never be farther than 11 cm from that position. Its
maximum displacement is 11 cm:

Xy — 11 cm (Answer)




Block-spring SHM, amplitude, acceleration, phase constant

(c) What is the maximum speed v,, of the oscillating block,
and where is the block when it has this speed?

KEY IDEA

The maximum speed v,, is the velocity amplitude wx,, in Eq. 15-6.

Calculation: Thus, we have
Vi = @X,, = (9.78 rad/s)(0.11 m)
= 1.1 m/s. (Answer)

This maximum speed occurs when the oscillating block is rush-
ing through the origin; compare Figs. 15-4a and 15-4b, where
you can see that the speed is a maximum whenever x = 0.




Block-spring SHM, amplitude, acceleration, phase constant

(d) What is the magnitude a,, of the maximum acceleration
of the block?

KEY IDEA

The magnitude a,, of the maximum acceleration is the accel-
eration amplitude w’x,, in Eq. 15-7.

Calculation: So, we have
a,, = w*x,, = (9.78 rad/s)?(0.11 m)

m

=1 /s (Answer)

This maximum acceleration occurs when the block is at the
ends of its path. At those points, the force acting on the
block has its maximum magnitude; compare Figs. 15-4a and
15-4¢c, where you can see that the magnitudes of the dis-
placement and acceleration are maximum at the same times.




Block-spring SHM, amplitude, acceleration, phase constant

(e) Whatis the phase constant ¢ for the motion?

Calculations: Equation 15-3 gives the displacement of the
block as a function of time. We know that at time 7 = 0,
the block is located at x = x,,. Substituting these initial
conditions, as they are called, into Eq. 15-3 and canceling x,,

S 1 = cos ¢. (15-14)
Taking the inverse cosine then yields

¢ = 0O rad. (Answer)

(Any angle that is an integer multiple of 27 rad also satisfies
Eq. 15-14; we chose the smallest angle.)

(f) What is the displacement function x(z) for the
spring—block system?

Calculation: The function x(¢) is given in general form by
Eq. 15-3. Substituting known quantities into that equation

gives us
x(t) = x,, cos(wt + @)

= (0.11 m) cos[(9.8 rad/s)t + 0]
= (0.11 cos(9.8r), (Answer)

where x 1s in meters and 7 1s in seconds.




Finding SHM phase constant from displacement and velocity

At t = 0, the displacement x(0) of the block in a linear oscil-
lator like that of Fig. 15-5 is —8.50 cm. (Read x(0) as “x at
time zero.”) The block’s velocity v(0) then is —0.920 m/s,

and its acceleration a(0) is +47.0 m/s%.

(a) What is the angular frequency w of this system?

KEY IDEA

With the block in SHM, Eqs. 15-3, 15-6, and 15-7 give its dis-
placement, velocity, and acceleration, respectively, and each
contains .

Calculations: Let’s substitute =0 into each to see
whether we can solve any one of them for w. We find

x(0) = x,, cos ¢,
v(0) = —wx,, sin ¢, (15-16)
and a(0) = (15-17)
In Eq. 15-15, w has disappeared. In Egs. 15-16 and 15-17, we
know values for the left sides, but we do not know x,, and ¢.

However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim-
inate both x,, and ¢ and can then solve for w as

/ a(O 47 0 m/s?
x(0) \/ —0.0850 m
= 23.5 rad/s. (Answer)
(b) What are the phase constant ¢ and amplitude x,,?

(15-15)

—w’x,, COS ¢.

Calculations: We know w and want ¢ and x,,. If we divide
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns
and reduce the other to a single trig function:

v(0)  —wx,sin ¢
x(0)  x,cos ¢

= —w tan ¢.

Solving for tan ¢, we find
v(0) —0.920 m/s
tan ¢ = — = —
wx(0) (23.5 rad/s)(—0.0850 m)
= —0.461.

This equation has two solutions:
¢=—25° and ¢ =180° + (—25°) = 155°.

Normally only the first solution here is displayed by a calcu-
lator, but it may not be the physically possible solution. To
choose the proper solution, we test them both by using them
to compute values for the amplitude x,,. From Eq. 15-15, we

find that if @ = —25°, then

x(0)  —0.0850 m
cos ¢ cos(—25°)
We find similarly that if ¢ = 155° then x,, = 0.094 m.

Because the amplitude of SHM must be a positive constant,
the correct phase constant and amplitude here are

¢=155° and x,,=0.0949m =94 cm.

= —0.094 m.

Xm =

(Answer)

m




SHM potential energy, kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti-sway
devices to prevent them from oscillating in a wind. The de-
vice might be a block oscillating at the end of a spring and
on a lubricated track. If the building sways, say, eastward,
the block also moves eastward but delayed enough so that
when it finally moves, the building is then moving back west-
ward. Thus, the motion of the oscillator is out of step with
the motion of the building.

Suppose the block has mass m = 2.72 X 10° kg and is
designed to oscillate at frequency f = 10.0 Hz and with am-

-
g

plitude x,,, = 20.0 cm. - 2

(a) What is the total mechanical energy E of the
spring—block system?

KEY IDEA

The mechanical energy E (the sum of the kinetic energy
K = 2mv? of the block and the potential energy U = 3kx? of
the spring) is constant throughout the motion of the oscillator.
Thus, we can evaluate E at any point during the motion.

Calculations: Because we are given amplitude x,, of the
oscillations, let’s evaluate E when the block is at position
x = x,,, Where it has velocity v = 0. However, to evaluate U

at that point, we first need to find the spring constant k.
From Eq.15-12 (0 = \/I%) and Eq.15-5 (0 = 27f), we find
k = mo? = mQ2nf)?
= (2.72 X 10° kg)(27)*(10.0 Hz)?
= 1.073 X 10° N/m.
We can now evaluate E as
E =K+ U= ymv?* + kx*
= 0 + 3(1.073 X 10° N/m)(0.20 m)?

= 2147 X 10’7 =21 x 107 J. (Answer)

(b) What is the block’s speed as it passes through the equi-
librium point?

Calculations: We want the speed at x = 0, where the
potential energy is U = 3kx?> = 0 and the mechanical energy
is entirely kinetic energy. So, we can write

E=K+ U=3im?* + 1kx?
2.147 X 107J = 3(2.72 X 10° kg)v* + 0,
or v = 12.6 m/s. (Answer)

Because E is entirely kinetic energy, this is the maximum
speed v,,.




The Simple Pendulum
e —

A simple pendulum consists of a mass at the end
of a lightweight cord. We assume that the cord
does not stretch, and that its mass is negligible.

The restoring force is P = — g sin &

However, if the angle is small, sin 6 = 6, and the
restoring force becomes proportional to the
displacement. We then have SHM.

F=-mgsinf ~—-mgl

which fits Hooke’ s
law, the effective

x=L0= force constant being
Copyright © 2005 Pearson Prentice Hall, Inc. k=m g /L

\mg cos 6

The period and frequenc

T = 272'\/E =27 m — do not depend on the
k mg /L f

mass

Ex.11-9 A geologist uses a simple pendulum that has length of 37.10 cm and a
frequency of 0.8190 Hz at a particular location on Earth. What is the acceleration
of gravity at that place? g2=9.824m/ s>




Damped Harmonic Motion —

Damped harmonic motion is harmonic motion with a frictional or drag force.
If the damping is small, we can treat it as an “envelope” that modifies the
undamped oscillation.

b,

Copyright © 2005 Pearson Prentice Hall, Inc.

There are systems where damping is unwanted, such as clocks and watches.
Then there are systems in which it is wanted, such as automobile shock
absorbers and earthquake protection for buildings




Damped Harmonic Motion

The force on the block from the spring
F,= —kx

S

Rigid support

= Springiness, k s
damping force F,= —py

where b 1S a damping constant

Mass m
gravitational force on the block is negligible relative to F,; and F;

Newton’s second law —bv — kx = ma

Vane
- d’x dx
Damping, b
m + b— + kx = (),
dt? dt

Fig. 15-14 Anidealized damped simple r

— s D12 / 15-42
harmonic oscillator. A vane immersed in a X(t) = Xpu € it COS((U (i ¢) ( )
liquid exerts a damping force on the block

as the block oscillates parallel to the x axis. \/ k b2
'
: = S
m  4m?




Damped Harmonic Motion H”

X Rigid support

A
; Springiness, k X(t) — Xm e—bt/Zm COS(w,t + ¢) (15-42)

,:\/k B b?
e m 4m?

We can regard Eq. 15-42 as a cosine function whose amplitude, which is
x, e b"?m_ oradually decreases with time, as Fig. 15-15 suggests. For an undamped
oscillator, the mechanical energy is constant and is given by Eq. 15-21 (E = 1kxm)
If the oscillator is damped, the mechanical energy 1s not constant but decreases
with time. If the damping is small, we can find E(7) by replacing x,, in Eq. 15-21
with x,, e ?">m the amplitude of the damped oscillations. By doing so, we find that

Vane

Damping, b

E(t) = 1kx2,e7b'm, (15-44)




Damped Harmonic Motion H”

B e e os (i) e




Damped harmonic oscillator, time to decay, energy

For the damped oscillator of Fig. 15-14, m =250¢g, k =
85 N/m,and b = 70 g/s.

(a) What is the period of the motion?

KEY IDEA

Because b <Vkm = 4.6 kg/s, the period is approximately
that of the undamped oscillator.

Calculation: From Eq. 15-13, we then have

[m [0.25 kg
= _— _— = '3 .
i =" X 27 35N/ 0.34s

(Answer)

(b) How long does it take for the amplitude of the damped
oscillations to drop to half its initial value?

KEY IDEA

The amplitude at time 7 is displayed in Eq. 15-42 as x,,, e /2™

Calculations: The amplitude has the value x,, at t = 0.
Thus, we must find the value of ¢ for which

—bti2m — 1
Xm € = jxm.

Canceling x,, and taking the natural logarithm of the equa-
tion that remains, we have In % on the right side and

In(e2?m) = —bt/2m

on the left side. Thus,
—2mIny _ —(2)(025kg)(In3)
b 0.070 kg/s

—15:0;s:

(Answer)

Because T = 0.34 s, this is about 15 periods of oscillation.

(c) How long does it take for the mechanical energy to drop
to one-half its initial value?

KEY IDEA

From Eq. 15-44, the mechanical energy at time 7 is %kvc2 et

“m*

Calculations: The mechanical energy has the value
%kx2 at f = 0. Thus, we must find the value of ¢ for which

m
17,2 ,—btim —_ 1714 92
ikx i = i(ikxm .

If we divide both sides of this equation by %kx%,, and solve for
t as we did above, we find

—mIny _ —(025kg)(In3)
b 0070kgls

2355 (Answer)

This is exactly half the time we calculated in (b), or about
7.5 periods of oscillation. Figure 15-15 was drawn to illus-
trate this sample problem.




Forced Vibrations, Resonance H

Forced vibrations occur when there is a periodic driving force. This force
may or may not have the same period as the natural frequency fo of the
system.

If the frequency is the same as the natural frequency, the amplitude becomes

quite large. This is called resonance.

A The sharpness of the resonant peak

A depends on the damping. If the
damping is small (A), it can be quite
sharp; if the damping is larger (B), it is
less sharp.

B :
/\ Examples of resonance: child on a

; f swing, singer shattering a crystal,
fo Tacoma Narrows Bridge.

Amplitude of
oscillating system

External frequency f

Copyright © 2005 Pearson Prentice Hall, Inc.

Tacoma Bridge: http://br.youtube.com/watch?v=3mclp9QmCGs



http://br.youtube.com/watch?v=3mclp9QmCGs

PROBLEMS TO SOLVE H”

14, 15,17, 18, 20
28-33, 35
58-59




