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An introduction to the spectrum, symmetries, and dynamics of spin-1/2

Heisenberg chains

Kira Joel, Davida Kollmar, and Lea F. Santos

Department of Physics, Yeshiva University, 245 Lexington Ave, New York, New York 10016
(Received 12 September 2012; accepted 12 March 2013)

Quantum spin chains are prototype quantum many-body systems that are employed in the
description of various complex physical phenomena. We provide an introduction to this subject by
focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on
the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available
online all computer codes used to obtain our data. © 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4798343]

I. INTRODUCTION

The fascination with magnets can be traced back as far as
the antiquity in China, but it was only with the discovery of
spin that we developed a better understanding of magne-
tism."? Insulating solids with magnetic properties, in particu-
lar, can be viewed as lattices of atomic or ionic magnetic
moments, each localized to one site.>™ The total magnetic
moment of the atom or ion depends, in general, on the spins
of the electrons in incomplete shells and their orbital angular
momenta. Here, we refer to this total angular momentum
simply as spin. The interactions between the spins on the lat-
tice sites may lead to collective behaviors with macroscopic
effects, such as ferromagnetism, where the spins line up par-
allel to each other, and antiferromagnetism, where neighbor-
ing spins point in opposite directions. The source of such
spontaneous magnetization is the so-called exchange interac-
tion, introduced by Heisenberg and Dirac in the end of the
1920°s.** This interaction has a quantum mechanical origin.
It is the manifestation of the Coulomb repulsion between the
electrons and the Pauli exclusion principle, being therefore
strong and short range. A magnetic dipolar interaction is also
present, but it is too small to explain magnetism at room
temperature.

The exchange interaction between particles of spin-1/2
and higher is usually described by the Heisenberg model.
This is one of the most important models of magnetism and
has been investigated for decades.” In 1931, Bethe found
an exact analytical solution to the one-dimensional spin-1/2
Heisenberg model with coupling between nearest-neighbor
sites.®” This was a breakthrough in the studies of exactly
solvable quantum many-body systems.® In 1983, Haldane
suggested a remarkable difference between one-dimensional
antiferromagnetic systems of integer and half-integer
spins,”'? namely, that the first should be gapped and the lat-
ter gapless.'' A necessary condition for a material to be insu-
lating is the presence of an energy gap between the ground
state and the first excited states. The prediction of the
Haldane gap was confirmed numerically and experimentally,
and a rifgorous proof was soon provided for a similar
model.' "2

The present work is restricted to the one-dimensional
spin-1/2 Heisenberg model. Despite being a simplified theo-
retical model, it describes quantitatively well certain real
materials found in nature or synthesized in a laboratory, such
as magnetic compounds. In some of these systems, unusual
high transport of heat has been verified,"*™"> which has moti-
vated the current interest in the subject. Such anomalous
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transport behavior has been associated with a macroscopic
number of conserved quantities characterizing the model.'®

The spin-1/2 Heisenberg model finds applications in sev-
eral other contexts. It is a key model in studies of quantum
phase transition,'” superconductivity,? localization in disor-
dered systems,'® as well as the dynamics'®' and thermal-
ization®* of correlated one-dimensional lattice systems. In
quantum information Heisenberg systems are used as models
for quantum computers, each spin-1/2 representing a quan-
tum bit (a qubit);** in the analysis of entanglement;** and in
methods to transfer information in a controllable way.?*° In
the presence of impurities, disorder, or couplings beyond
nearest-neighbors, the system becomes non-integrable and
has been employed in the characterization of the crossover
from integrability to quantum chaos.?’>°

There have also been attempts to simulate spin-1/2
Heisenberg chains with cold gases in optical lattices.”'
Optical lattices are crystals of light. Laser beams propagating
in opposite directions result in standing waves that confine
ultracold atoms to small regions, the atoms playing the role of
electrons in solid crystals.>” These systems are highly control-
lable, which allows for the simulation of condensed matter
models not easily accessible with real solid-state systems.
Moreover, they are weakly coupled to the environment, which
makes it possible to study their evolution for a long time.
These factors combined make optical lattices essential tools
to advance our understanding of quantum many-body systems
far from equilibrium. The behavior of nonequilibrium systems
is an outstanding challenge at the forefront of physics.

Motivated by the wide interest in spin systems and in the
out-of-equilibrium properties of quantum many-body sys-
tems, we study here the factors that may limit the time evolu-
tion of the one-dimensional spin-1/2 Heisenberg model with
couplings between nearest-neighbor sites only. We focus on
the effects of an anisotropy parameter and on the symmetries
of the system. We rely on the analysis of the eigenvalues and
eigenstates of the system to anticipate its dynamics. Our pre-
dictions are then confirmed with actual numerical results for
the time evolution. Because our studies require all eigenval-
ues and eigenstates, we use full exact diagonalization.

The paper is organized as follows. Section II provides a
detailed description of the Hamiltonian of the system. Section
IIT analyzes the diagonal elements of the Hamiltonian, as
well as its eigenvalues and eigenstates. Section IV investi-
gates the time evolution of the system, while its symmetries
and how they can constrain the system dynamics are
discussed in Sec. V.

© 2013 American Association of Physics Teachers 450
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II. SPIN-1/2 CHAIN

The description of a system composed of a single spin-1/2
requires the use of the spin operators §*°~ = 7% /2, where

&«“:(? (1)> &}':(? Oi), a%(é (il> (1

are the Pauli matrices and 7 has been set to 1. The quantum
state of the spin is represented by a two-component vector,
known as a spinor. This state is commonly written in terms

of basis vectors corresponding to the eigenstates of s,

denoted by |T) = < (1)) , for spin-up in the z-direction, and

[1)= (?), for spin-down in the z-direction. The eigen-

value associated with |T) is +1/2 and that of |]) is —1/2,
which justifies referring to the first as the excitation. The

operators S and §” flip the up- or down-spin according to

X 1 X 1
11y =210, ST =511 @
SI=F1 S =111 ®

Here, we study a one-dimensional system (chain) com-
posed of L coupled spins described by the Heisenberg model

L—1
H [ ( n+1 +Snsn+l) +‘IASnSn+1} (4)

=1

=

where the operators S:;y"z act only on the spin placed on site n.
The couplings are limited to nearest—neighbor spins; J is the

strength of the flip-flop term SnS,,+1 +S,IS,,+1, J, is the

strength of the Ising interaction S, S +1» and the ratio A =
J/J is the anisotropy parameter. The model is isotropic when
A = 1, in which case it is known as the XXX model, and it is
anisotropic when A # 1, usually referred to as the XXZ
model (an XYZ model also exists when the coupling strengths
in the three directions are different). A natural basis for the
system is the set of 2 states where the spin on each site is
either pointing up or down, such as ||;1,75--].). In quan-
tum information, these states are known as quantum computa-
tional basis vectors. We refer to them as site-basis vectors.

We note that the one-dimensional spin-1/2 Heisenberg
model can be mapped onto a system of hard-core bosons;
that is, bosons that cannot occupy the same site.*> This sys-
tem, in turn, is equivalent to the Bose- Hubbard model in the
limit of strong repulsive interaction.”® The Bose-Hubbard
model is used to describe interacting bosons on a lattice and
the Hubbard model treats interacting fermions. The latter
model was introduced in 1963 (Ref. 34) and since then these
models have been extensively studied, especially for describ-
ing superconductivity and the transition from an insulator to
a conductor. >

The flip-flop term in Hamiltonian (4) interchanges the
position of neighboring up and down spins according to

J(Snsn+l + Sn n+1)|T J«n+l> = (J/Z)HHTH-H)' (5)

Th1s ‘term 1is also commonly written with raising §T=¢"

+iS” and lowering § = =5 —is spin operators
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/2SS +SaSO T aburs) = T/ LuTus)-

(6)

The flip-flop term therefore couples site-basis vectors that
differ only by the orientation of the spins in two adjacent
sites. In this basis, it constitutes the off-diagonal elements of
the Hamiltonian matrix. This term plays a key role in the
evolution of the system by moving the excitations through
the chain.

In the case of open boundary conditions (an open chain),
as in Eq. (4), where the sum goes from site n =1 to site L — 1,
an excitation on site 1 can move only to site 2 and from site
L to L — 1. The scenario of a ring (a closed chain), where an
excitation on site L can also move to site 1, corresponds to
closed boundary conditions and will be discussed briefly in
this paper.

The Ising interaction contributes to the diagonal part of
the Hamiltonian matrix written in the site-basis. This term
causes a pair of adjacent parallel spins to have different
energy from a pair of anti-parallel spins, because

J’S Sn+1|TnTn+1> (']Z/4)HnTn+l>7 (7)
while
J S SnJrllT ln+1> (12/4)Hnln+l>' (8)

A Hamlltoman containing only the Ising interaction H..
=S, Sn 41> constitutes the Ising model and was employed
in the first attempts to describe the phase transition from par-
amagnetism to ferromagnetism.’’ As one can infer from
Egs. (7) and (8), the ground state of this model depends on
the sign of the interaction strength—it is ferromagnetic, with
all spins aligned in the same direction, when J. < 0, and it
shows an antiferromagnetic arrangement with antiparallel
neighboring spins when J, > 0.

The state in which all spins align in the same direction is
also an eigenstate of the Heisenberg model, because the flip-
flop term has no effect on it. When the Heisenberg model is
ferromagnetic (J. < 0), this state is a ground state. For the
antiferromagnetic Heisenberg model (J. > 0), on the other
hand, the ground state is more complicated than the simple
configuration of antiparallel spins (details about it may be
found, for instance, in Ref. 5).

Here, we are interested not only in the ground state but
also in all eigenvalues and eigenstates of the finite antiferro-
magnetic XXZ model with open boundary conditions. They
are computed numerically and used to compare the static and
dynamic properties of the system in two scenarios, when
A=<1 and when A >> 1. We address the role of the anisotropy
parameter, as well as border effects and symmetries.

Our Hamiltonian commutes with the total spin in the z

direction & = S5 §: that is, [H, 8] = 0. This means that

n=1%n>
the system is invariant by a rotation around the z-axis or,
equivalently, it conserves S.Asa result, the Hamiltonian
matrix of a system with L sites is composed of L + 1 inde-
pendent blocks (or subspaces), each with a fixed number N €
[0, L] of up-spins. Therefore, even though the total dimension
of the Hilbert space is 2¢, we can diagonalize a single sub-

space at a time, each of dimension D = (g) When L is

even, the largest subspace has N =L/2. In this case, full exact
diagonalization can be carried out for L < 14 with the
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Mathematica computer codes we provide.*® For larger sys-
tems, we recommend using a high-level computer program-
ming language, such as Fortran or C++. Full exact
diagonalizations have been performed for matrices with up
toD ~ 3 x 10*°

Other symmetries may also be present, but this discussion
is left for Sec. V. In Secs. III and IV, we focus on the analy-
sis of the spectrum of a particular S -subspace and use the
structure of its eigenstates written in the site-basis as a way
to predict the dynamics of the system. We then confirm our
expectations by investigating the actual time evolution of
different initial states.

III. SPECTRUM

Before diagonalizing the XXZ-Hamiltonian matrix, which
we write in the site-basis, let us first look at its diagonal ele-
ments. They correspond to the eigenvalues of the Ising part
(H..) of the Hamiltonian (4) and are split into sets of degen-
erate energies. Here, we refer to separated sets of energies as
energy bands. The bands are determined by the number of
pairs of adjacent parallel spins in the basis vectors. For each
S -subspace, the larger the number of palrs the larger the
energy of the basis vector. For example, in an open chain
with L=4 and N = 2, the highest energy JA /4 occurs for the
states with two pairs of parallel spins [17]]) and |[[77).
The band that precedes this one in energy has the states with
only one pair of parallel spins |T|[7) and |17 ), yielding
an energy of —JA/4, while the states of the band with the
lowest energy —3JA /4 have no pairs of parallel spins | T]7])
and | [7]7). One sees that the energy difference between con-
secutive bands is JA/2, since we move down in energy by
breaking a pair, thus adding the factor JA/4 one less time and
subtracting it one more time. In an open chain, where there
are L — 1 coupling bonds, the general expression for the
energy of each band is therefore

EXT = [2p — (L - 1)[JA/4, )
where p is the total number of pairs of adjacent parallel
spins.

In a closed chain, on the other hand, the energy difference
between successive bands is JA. In this case there are L bonds
and always an even number of antiparallel pairs, because
there is no border to absorb any of them. We move down in
energy by breaking necessarily two pairs of parallel spins, the
factor JA/4 thus being added two less times and subtracted
two more times. The diagonal energies are then given by

Eosed — [op — L)JA/4. (10)

Clearly, the closed chain has fewer bands than the open one,
as shown in Table I.

From now on, our analysis focuses solely on open chains.
Notice, however, that extending the studies to the case of

Table I. Number of energy bands formed with the diagonal elements of the
XXZ-Hamiltonian written in the site-basis. Note: | x| is the integer part of x.

N open closed
<|L/2] 2N N
[L/2] and [(L+1)/2] (L-1) N
>|(L+1)/2) 2AL-N) L-N)
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closed systems is straightforward and the codes for it are
provided.*®

For an open chain with an even number of sites and
N=L/2, the diagonal elements of the XXZ-Hamiltonian
matrix form L — 1 bands with energies ranging from
—(L —1)JA/4 when p=0, to (L —3)JA/4 when p=L - 2.
The total number of states 77z contained in an arbitrary band
B, with B < L/2 being a positive integer, is equal to the
number of states #;_p contained in the band L — B; that is,
the band structure is symmetric. The number of states in
each band grows as we approach the middle of the spectrum.
For example,

L=6: n=n5=2 m=n=4 n3=06, (11)

L=8: n=n=2 m=ns=6 n=n4=1s=18,
(12)

L=10: m=ny=2 m=n3=8 n3=1n;=32

Ny =1ne =48 n5="72. (13)
The case for L=10 is illustrated with histograms in
Figs. 1(a) and 1(b) for two values of A. The least populated
bands are always the ones in the extremes containing only
two states each, n; = #n;_; = 2. If Lmod4 # 0, as in Fig. 1,
B =1L/2 is the most populated band, whereas if L is divisible
by 4 the three bands in the middle are the most populated
with 17, ),y =1y /5 = Ny /241~ By studying the three examples
above and larger system sizes, we arrived at the general
equation

Mg =N

oTr N 1k/2)
- ZgNiék,l AT (14)

Contrary to the diagonal elements, the eigenvalues of the
total Hamiltonian (4) may or not form bands of energy

n 75- l L l L l . l . o 75-
60F a)q oOF v
“F @3 QF () 3 :
15¢ | | 1 DF | r
0 Ll. o bl lrl, 0 Ll
-1.0 -05 0.0 05 1.0 -20 -10 20
E /]

Fig. 1. (Color online) Histograms of the diagonal elements [panels (a) and
(b)], eigenvalues [panels (c) and (d)], and IPR averaged over all eigenstates
vs. A [panel (e)], for the antiferromagnetic XXZ-Hamiltonian with open
boundaries for L =10 and N =5. The site-basis is used. Panels (a) and (c)
have A = 0.5; panels (b) and (d) have A = 10. Panel (c) bin width =0.2 and
panel (d) bin width = 1.0.
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depending on the interplay between the Ising interaction and
the flip-flop term. Figures 1(c) and 1(d) show the histograms
for the spectrum of the XXZ-chain obtained with the same
parameters considered in the top panels. In Fig. 1(c), where
A=I1, the band structure is lost. This happens because the
energy difference between the basis vectors is <J, so the
flip-flop term can couple intra- and also inter-band states,
broadening significantly the range of energy values. In con-
trast, the band structure is preserved in Fig. 1(d) where,
because A > 1, states from different bands are too far off-
resonance and the flip-flop term can effectively couple only
states belonging to the same band. Each band then acquires a
small width that does not erase the energy gap between
them.*

The competition between the Ising and the flip-flop term
of the Hamiltonian is also reflected in the structure of the
eigenstates. As the Ising interaction increases, limiting the
role of the flip-flop term, the eigenstates become less spread
in the site-basis. This can be quantified, for example, with
the so-called inverse participation ratio (IPR).*'** Consider
an eigenstate

D R
W) =" al|gy) (15)
k=1

written in terms of arbitrary orthonormal basis vectors |¢y).
The IPR is defined as

: 1
V) —
19 = — . (16)

S ja?

k=1

This quantity is proportional to the number of basis vectors
which contribute to each eigenstate. It is small when the state
is localized and large when the state is delocalized in the cho-
sen basis. In our studies, |¢,) corresponds to the site-basis.

Figure 1(e) shows the IPR averaged over all eigenstates
(I) for various values of the anisotropy parameter. The maxi-
mum delocalization occurs at A = 0. As the anisotropy
increases, (/) decays monotonically until the energy bands
cease overlapping and (/) approaches a constant value.'® In
this latter scenario the eigenstates become superpositions
involving only intra-band basis vectors.

IV. DYNAMICS

We now analyze the time evolution of different initial
states, each corresponding to a specific site-basis vector
[\Y(0)) = |¢;). The source of the dynamics is the flip-flop
term, which couples |¢;) with other states, transforming
[W(r)) into an evolving superposition of site-basis vectors.
From the results for the eigenvalues and eigenstates
described in Sec. III, we expect the initial state to spread
over several basis vectors when A<1, whereas the dynamics
should be confined to states belonging to the same energy
band as |¥(0)) when A > 1.

To confirm the above predictions, we study two quantities:
the magnetization of each site

M, (1) = (P(0)|S;|¥(r)), (17)

and the probability P;(¢) for finding a basis vector |¢;) at
time ¢. Because the Hamiltonian matrix (4) in the site-basis

453 Am. J. Phys., Vol. 81, No. 6, June 2013

is real and symmetric, one can find a set of orthonormal real
eigenstates. This is indeed what we obtain from our numeri-
cal diagonalization. Furthermore, since the initial state is a

single basis vector, we have |¢,) = Zjl-):la](mxp(")), where
the coefficients are real. This leads to

() = S e B f)(iak@a@f”ﬂf’) ),
j=1 1 =1

=

(18)
and the probability is then given by
D2
Pty = > allale ™| | (19)
=1

The panels in Fig. 2 show the magnetization of each site
for an open chain that has a single excitation initially placed
on site 1: [¥(0)) = |Tl] ... | ). In panels (a) and (c), where
A = 0.5, the up-spin leaves the edge and gradually spreads
through the chain by hopping successively from one site to
the next in intervals of time ~J~!. The probability of finding
it on a single site decreases from site 2 to L — 1, but it finally
reaches the other edge with high probability. The preference
for the edges is a border effect that occurs only in open
chains, and is caused because the border states |T]] ... |)
and |]] ... [T) are in resonance. This effect decreases with
system size, as seen by comparing panel (a) where L =06,
with panel (c) where L=12. Since the energy difference
between the border states and the states with the up-spin on
sites 2 <n <L — lisonly JA/2 = 0.25/, the latter can still
take part in the dynamics. For comparison, we show in pan-
els (b) and (d) the case where this energy difference is large
(JA/2 = 57J). There, only the border states are effectively
coupled. The intermediate states, being so different in
energy, have negligible participation in the evolution of the
initial state. In perturbation theory, they are referred to as
“virtual states.”” The order of perturbation theory in which
the border states are coupled is determined by the number of
virtual states separating them, and their effective coupling

S
=
T
1

0.0F 2345
-0.2 67 8910/114 -0.2f ]
-0.4 04F/, -
0 5 10 Is 0 1 2 3 45 6
Jt 10°Jt

Fig. 2. (Color online) Magnetization of each site versus time when the initial
state is ||| ... | ). The sites are indicated with numbers. Panels (a) and (c)
have A = 0.5 while panels (b) and (d) have A = 10. Top panels have L =6
and bottom panels have L = 12. All panels are for open chains.

Joel, Kollmar, and Santos 453



strength Jgr is inversely proportional to the order of pertur-
bation theory and to the energy difference between coupled
and intermediate states. Therefore, the time ¢ ~ Je’ff1 for the
excitation to move from n=1 to n=L is long and increases
with system size, as seen by the time scales in panels (b) and
(d), where two different chain sizes are considered.

The different time scales associated with the order of per-
turbation theory in which states are effectively coupled are
well illustrated in the top panel of Fig. 3. There we have 6
sites and 2 excitations initially placed away from the borders
but next to each other. Because the anisotropy considered is
large (A = 10) the up-spins will tend to move through the
chain as a bound pair. The figure shows the probability in
time for each basis vector. The initial state [¥(0)) = | [ T1/]
1) (whose probability is indicated with a solid line) is in res-
onance with the basis vectors | | [17]] ) (circles) and | || |11
| ) (triangles), both of which have up-spins next to each
other. It is also in resonance with state |T]]]]T) (crosses),
which compensates for the absence of a bound pair of up-
spins by placing each excitation on a border site. This reso-
nance is therefore a border effect. The four states belong to
the same energy band, which is well separated from the other
bands. Thus, only these four states should be able to mix, as
confirmed by the figure.

State | [77]]]) couples with state |[][77]]) in second-
order of perturbation theory via an intermediate transition
where the pair splits into the virtual state | |77 ) and then
recombines again. Because the energy difference E 1))
—Ej 1111y = JA, the effective coupling strength between | |1
11D and \ llTTll) obtained by perturbation theory is
Jegt ~J/ AP The same coupling strength is found
between states || [17]]) and |[[][77]). These states then
hybridize at t ~ AJ~'. In contrast, the effective coupling
between |[17]]]) and [T]]]]T) occurs in fourth-order of
perturbation theory. It then takes much longer for the latter
state to take part in the dynamics. As seen in the top panel of

1.0

0.8

0.6

P }
0.4

0.2
0.

1.0p
0.8F
0.6
0.4
0.2f
0.0

P

10°Jt

Fig. 3. (Color online) Probability in time to find a specific basis vector for

an open chain with L=6 and A = 10. Top panel: initial state |[TT[]])
(solid line) couples effectively with ||[|[11]]) (circles), || [[TT]) (trian-
gles), and |T]][|1) (crosses). Bottom panel: initial state |[117[]]) (solid
line) couples effectively only with | || [ 111 ) (dashed line).
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Fig. 3, the probability to find this state is negligible for a
long time. Moreover, similar to the discussion in Fig. 2, this
time increases further with system size and the maximum
probability to ever find this state decreases further.

The combination of large anisotropy and border effects
can slow down the evolution of the system 51gn1ﬁcantly, to
the point that an initial state may look stationary.'®**¢
This is the case shown in the bottom panel of Fig. 3, where
A = 10 and the initial state |'¥(0)) = |117]]] ) has a bound
triple of up-spins with one excitation on the border. This
panel shows the probability in time for each basis vector.
The initial state can hybridize only with | [|[[T77) because
all the other states are very far away in energy. The commu-
nication between the two states occurs in a very high order
of perturbation theory, all three excitations taking a long
time to cross the chain from the left to the right side. This
makes the initial state look frozen for a long time. Notice
that in a closed chain, where the borders are absent, the dy-
namics would be faster. In this case, the bound triple of exci-
tations 17T would not be restricted to the edges but would
move together through the whole chain.

Separated energy bands caused by large anisotropy and
the presence of borders can then limit the dynamics of the
system to a portion of the Hilbert space. Another restrictive
factor is the symmetries of the system, as we discuss next.

V. SYMMETRIES

Operators that commute with the Hamiltonian have two
important properties: their eigenstates are also eigenstates of
H,* and they represent physical quantities that are con-
served.*® The latter property comes from the fact that the ex-
pectation value of a conserved quantity (é) does not change
in time, SO

a0 i,
dt h

1 ~ - ~ ~

—OH)=0 = [H,0]=0. (20

The way to find such constants of motion is by looking for
the sImmetrles of the system. According to Noether’s theo-
rem,” the invariance of the Hamiltonian under a symmetry
operation must necessarily lead to a conserved quantity. For
example, invariance of H under translation in space leads to
conservation of linear momentum, and invariance of H under
translation in time leads to conservation of total energy.

We have already encountered a conserved quantity of our
system, the total spin in the z-direction. As we saw when
studying the dynamics, the eigenvalue of S” for the initial
state is conserved throughout the evolution. If the initial state
has N up-spins, then all the states that take part in its evolu-
tion must have the same number of up-spins. But our system
shows additional symmetries, as we describe next.

Hamiltonian (4) is invariant under reflection, which leads
to conservation of parity; that is, H commutes with the parity
operator

751,L752,L—1 75L L+2 for L =even
=7 . . 27 2
PiiPar-1-- PL 1 L+3 for L = odd,
2 T 2
(21)
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Az AZ

where P;; = (667 + 676; + 6;6; +7)/2 is the permutation
operator and " is the 1dent1ty operator. In words, P; ,j permutes
the ith and jth vector spaces. For instance, ﬂ| )

= [1TLLT).

Invariance under reflection may be better understood by
imagining a mirror at one edge of the chain. If parity is con-
served the probability of each basis vector in the eigenstate
is equal to that of its reflection. For example, suppose we

have L =4 and one excitation. The eigenstates of H, which
are also eigenstates of II, are given by

WYy =a? 1111 1) +a 1110 +a? 1111 +af( 1117

(22)
and the probability amplitudes are either agn = af() and
(1) *aO for even parity (I = +1), or a&” = —af‘” and

ag ) = —agl ) for odd parity (IT = —1). (Notice that the hat in

I1 indicates the operator and its absence indicates the eigen-
value: TT|y") = TIjyY)).)

If L is even and N = L/2, our Hamiltonian is also invariant
under a global = rotation around the x-axis. The operator that
realizes this rotation is

RS =636 (23)

and one can easily verify that [I-? ,Ié;] = 0. As an example,
suppose we have L =4 and N = 2. The eigenstate

W) =a?11111) +af11111) +af|1117)
+al|111L) +a | 110 +ad[111) @
has either agj) :ag), aéﬁ :ag’), and a;’ = a,;’, in which

case R}, = +1, or a%’) = —ag), az@ = —ag’), and ag’) = —afp,

in which case R}, = —1.

There are two other symmetries, which we will not
explore here. One is conservation of total spin Sr= > S,
which occurs only in isotropic systems (A = 1) where

() )

H,S ;] = 0. The other is conservation of momentum, which
happens in the closed chain due to its invariance by a transla-
tion in space.

In this work, we focus on IT and R and analyze how they
affect the dynamics of the system. For this, we consider four
different initial states corresponding to superpositions of few
basis-vectors,

AO) = = (T4 + [ LITTTLY), es)
¥a(0)) = = (LTT141) = [LITTTLY), 6)
1
o) = (LT + 1), @)
[¥5(0)) = S (H1IT11L) = [LL1T1)
HITLTT) = 1T, e8)

The first two states are not eigenstates of Ié':[ although parity
is well defined—|¥4(0)) has even parity and |¥5(0)) has
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odd parity. State |\¥¢(0)), on the other hand, is an eigenstate
of the operator R with eigenvalue +1, but is not an eigen-
state of II. The last state |[Wp(0)) is an eigenstate of both IT
and R , with eigenvalues —1 and +1, respectively.

In Table II, we write each initial state as a linear superpo-

sition of the eigenstates of the system |Wapcp(0)) =

> CX,)B,C,D|W")> so that we can investigate which eigenstates
can take part in the evolution. The first column numerates
the eigenstates |1//(’ ). The second and third columns give the

eigenvalues of IT and R , respectively, for each eigenstate.
The fourth, fifth, sixth, and seventh columns show the values

of the probability amplitudes CX)BC p of the eigenstates for

the initial states |W4(0)), |¥5(0 )) [Wc(0 )>, and |¥p(0)),
respectively. The eigenvalues of IT and R,Z for each initial
state are shown in the second and third rows.

From the table, we can see that only the eigenstates with
the same symmetries as the initial state can contribute to the
evolution of the latter. For [¥4(0)) and |W5(0)), eigenstates
with both values of R}, are seen, but parity is strictly con-
served. In the first case, the probability amplitudes of all odd
eigenstates are zero and for the second state, cg> = 0 for all
eigenstates with IT = +1. For state |¥¢(0)), eigenstates with
both parities are part of the superposition, but ¢~ # 0 only

Table II. The first column numerates the eigenstates |l//(j>> of an open XXZ
chain with A = 0.4, L=6, and N=3. The second and third columns give,
respectively, the eigenvalues IT and R}, of these eigenstates. Columns 4-7
give the probability amplitudes CX‘)B‘C‘D of the initial states [Eqgs. (25)—(28)]
written  as superposmons of the eigenstates of the Hamiltonian:

[Yapcn(0)) =3 CABCD Y)Y, The eigenvalues IT and R}, for these initial
states are shown in the second and third rows, respectively.

['¥4(0)) [¥5(0)) [¥c(0)) [¥5(0))

M=+1 I=-1 =g Mm=—1

Ri=@ R =g R =+1 R =+l

I1 R}, cg) cg) cg) cg)
Yy - - 0 —0.16 0 0
y? + o+ —0.19 0 ~0.19 0
y? -+ 0 0.33 0.33 0.46
Y@ - - 0 -0.07 0 0
P + o+ 0.19 0 0.19 0
y® + - 048 0 0 0
yt7 + 4+ —0.05 0 ~0.05 0
y® -+ 0 —0.28 —0.28 ~0.40
Y - - 0 0.33 0 0
Y10 - - 0 0.42 0 0
Py 4 + —0.50 0 —0.50 0
A —0.15 0 0 0
p o+t —0.34 0 ~0.34 0
Yy - - 0 0.11 0 0
Y - - 0 —0.30 0 0
A - + 0 -0.56 -0.56 —-0.79
yumno L - 0.50 0 0 0
y® 4 0.04 0 0.04 0
Y1 - - 0 —0.28 0 0
y 4+ 4+ —0.24 0 —0.24 0
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for eigenstates with RY = +1. The last state |¥p(0)) has
both symmetries, so only three of the 20 eigenstates have
cg # 0, those with IT = —1 and R}, = +1 simultaneously.
The three -eigenstates constltuting |¥p(0)) are
3, [y ®), and |19)). They are more localized in the site-
basis than all other eigenstates, i.e., they have fewer coeffi-
cients a; ;é 0 in Eq. (15). This is because superpositions of
some of the basis-vectors cannot satisfy both II = —1 and
R}, = +1 at the same_ tlme For example, the effect of the
two operators I1 andR on by | T1T1LL) +b2| LLLTTT) is the
same, so they cannot glve different eigenvalues. If [T = —1,
we necessarily have b, = —b, for which case R} is inevita-
bly —1. These two basis vectors (and similarly for others)
cannot, therefore, be part of the contributing eigenstates

WO, W ®), and [y19); the coefficients a( H®-06) a550ci-
ated with these basis vectors can only be zero.

In summary, the larger the number of conserved quanti-
ties, the smaller the invariant subspaces. The time evolution
of an initial state with many constants of motion is therefore
more constrained in the Hilbert space.

VI. DISCUSSION

All computer code used to obtain our data, along with
detailed explanations, are freely available.’® Students and
professors should have no difficulty reproducing our results
and exploring further questions. The studies described here
can constitute an entire summer project, as in our case, can
provide the basis for a senior thesis, or can give ideas for
assignments in courses on Quantum Mechanics. At the time
of completion of this work, the first two authors of this paper
were undergraduate students who had not had a course on
Quantum Mechanics, but had a solid background in Linear
Algebra.
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Lift and Forcing Pumps

This demonstration of the two standard pump types is at Benedictine College in Atchison, Kansas. The lift pump is
on the left-hand side and the forcing pump, with its spherical globe, is on the right. Both pumps draw water from
a rectangular pan placed under the two input pipes. (Notes and photograph by Thomas B. Greenslade, Jr., Kenyon

College)
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